HYDRODYNAMIC LIMIT OF MULTISCALE VISCOELASTIC MODELS
FOR RIGID PARTICLE SUSPENSIONS

MITIA DUERINCKX, LUCAS ERTZBISCHOFF,
ALEXANDRE GIRODROUX-LAVIGNE, RICHARD M. HOFER

ABsTRACT. We study the multiscale viscoelastic Doi model for suspensions of Brownian
rigid rod-like particles, as well as its generalization by Saintillan and Shelley for self-
propelled particles. We consider the regime of a small Weissenberg number, which
corresponds to a fast rotational diffusion compared to the fluid velocity gradient, and
we analyze the resulting hydrodynamic approximation. More precisely, we show the
asymptotic validity of macroscopic nonlinear viscoelastic models, in form of so-called
ordered fluid models, as an expansion in the Weissenberg number. The result holds for
zero Reynolds number in 3D and for arbitrary Reynolds number in 2D. Along the way,
we establish several new well-posedness and regularity results for nonlinear fluid models,
which may be of independent interest.
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1. INTRODUCTION

1.1. General overview. Suspensions of rigid particles in Stokesian fluids are ubiquitous
both in nature and in applications and are known to typically exhibit non-Newtonian
behaviors. These systems can be described on different scales: either by macroscopic non-
Newtonian fluid models, or by so-called multiscale kinetic models, or else on the microscopic
scale as suspended particles moving in a fluid flow. Let us briefly describe these different
levels of physical description:

o Macroscopic non-Newtonian fluid models:
An incompressible fluid flow is generally described by the Navier—Stokes equations,
{ pa(0r +u-V)u—div(e) + Vp = h,

div(u) = 0, (1.1)



where u : Rt x R® — R? is the fluid velocity field, where the source term h accounts for
internal forces, where pg stands for the fluid density (constant, say), and where o is the
deviatoric fluid stress (a trace-free symmetric matrix field). For Newtonian fluids, the
stress is linear in the strain rate, that is,

o =2uD(u), (1.2)

where the strain rate D(u) = 3(Vu + (Vu)7) is defined as the symmetric gradient of the
fluid velocity, and where the viscosity p > 0 is a constant. In contrast, non-Newtonian
fluids are characterized by more complex constitutive laws relating the stress o to the
strain rate D(u), describing various possible types of nonlinear and memory effects. In
macroscopic non-Newtonian models, these laws are assumed to take some explicit form
and are usually fitted phenomenologically to experimental rheological measurements. In
Reiner—Rivlin and in generalized Newtonian fluid models, the stress ¢ is simply taken to
be a local function of D(u), meaning that only nonlinear effects are retained. To further
describe memory effects of non-Newtonian fluids, such as viscoelastic properties, more
realistic models rather relate o and D(u) via integral or differential equations, which
aim to take into account the dependence of the stress on the fluid deformation history.
Such models that are frame invariant are generically called simple fluids, of which the
celebrated Oldroyd-B and FENE-P models are particular cases. In the fast relaxation
limit, simple fluid models reduce to the hierarchy of so-called ordered fluid models. We
refer to Section 3 for details.

o Multiscale kinetic models for suspensions:

So-called multiscale or micro-macro models go one step away from the pure phenomenology,
towards a microscopically more accurate description of particle suspensions. More
precisely, the macroscopic fluid equation (1.1) gets coupled via the stress o to a kinetic
equation describing the evolution of the suspended solid phase. The latter is modeled by
a particle density function f(¢,z,n) € R* at time ¢, where x is the position of particles
and n is their ‘state’: for instance, n € R? may describe the relative position of endpoints
of elongated particles (hence n € S¥~! in case of rigid suspended particles as will be
considered in this work). The evolution of the particle density f is then modeled by a
Fokker—Planck equation describing transport with the fluid and diffusive effects. Finally,
the coupling to the macroscopic fluid equation is expressed through an explicit constitutive
law o0 = o(f,D(u)), which is typically derived from formal microscopic considerations in
dilute regime. Such models describe how the microscopic state of the particles adapts
collectively to local fluid deformations and how the macroscopic fluid flow gets itself
effectively impacted. Popular models include the kinetic FENE and Hookean dumbbell
models for dilute suspensions of flexible polymers, the so-called Doi model for suspensions
of Brownian rigid rod-like particles, and the Doi-Saintillan—Shelley for corresponding
active particles. We refer to Section 2 for details.

e Microscopic models:
At the particle scale, we can formulate a fully detailed hydrodynamic model describing
the motion of suspended particles in the Stokesian background fluid flow. It takes form
of equation (1.1) restricted to the fluid domain, with Newtonian constitutive law (1.2),
coupled with Newton’s equations of motion for the particles. We refer for instance
to [HS23| for a discussion of this complex dynamics.

From the modeling perspective, while microscopic models are certainly impractical due to
the huge number of particles in real-life systems, one can argue that multiscale kinetic models
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are more satisfactory than macroscopic fluid models as they retain some information from
the fluid-particle coupling and therefore better reveal mechanisms leading to non-Newtonian
behavior. Yet, macroscopic models appeal through their simpler description: in particular,
they are much more accessible for numerical simulations and proner to comparison with
experimental rheological measurements.

Most previous works on particle suspensions have aimed either to study properties of
macroscopic non-Newtonian fluid models or multiscale kinetic models, or else to derive
multiscale kinetic models rigorously from microscopic particle dynamics, which has indeed
attracted considerable interest in recent years; see Section 1.3 below for references. In
the present contribution, we propose to fill the gap in the micro-macro understanding of
non-Newtonian effects of particle suspensions by further studying the derivation of explicit
macroscopic fluid models from multiscale kinetic models in suitable regimes.

In some exceptional cases, the kinetic equation describing the state of the particles in
micro-macro models can be integrated out and leads to a closed equation for the stress o in
terms of the strain rate D(u). This is for instance the case for the kinetic Hookean dumbbell
model, which is well-known to be formally equivalent to the Oldroyd-B macroscopic fluid
model (see e.g. the recent rigorous analysis in [DS23]). In general, however, no exact
macroscopic closure is available and we can only hope for perturbative closures to be valid
in suitable asymptotic regimes.

In fact, in the regime of weak non-Newtonian effects, a fairly large class of non-Newtonian
macroscopic fluid models is believed to be well approximated by a special family of
models, called ordered fluid models. More precisely, the latter are expected to be good
approximations for all viscoelastic fluids in the fading memory regime, that is, in the regime
when the elastic time-dependent effects due to suspended particles in the fluid have an
inherent relaxation timescale that is much shorter than the overall timescale of the fluid
flow. This ratio of timescales is the so-called Weissenberg number Wi. In other words,
ordered fluid models arise formally as expansions of any viscoelastic fluid model at small Wi,
which is sometimes referred to as the retarded motion expansion. A first-order fluid is a
Newtonian fluid, a second-order fluid is a non-Newtonian fluid where effects of order O(Wi?)
are neglected, a third-order fluid amounts to neglecting effects of order O(Wi?), etc.

In the present work, we focus on the so-called Doi model, which is a multiscale kinetic
model describing suspensions of Brownian rigid rod-like particles, and we further consider its
generalization by Saintillan and Shelley for active (self-propelled) particles. We rigorously
analyze the hydrodynamic limit of these models in the small-Wi expansion, which was
extensively studied on a formal level in the physics literature in the 1970s, see [HL72;
Bre74], and we confirm the asymptotic validity of ordered fluid models in this setting.
As a prerequisite, the justification of the asymptotic expansion requires a careful study
both of the Doi-Saintillan—Shelley model and of ordered fluid models: in particular, we
establish some new well-posedness and regularity results for these nonlinear viscoelastic
fluid models, which we believe are nontrivial and of independent interest. Moreover, as the
Doi-Saintillan—Shelley model can itself be derived from a microscopic hydrodynamic model
(at least formally), see Section 1.3, our derivation of macroscopic ordered fluid models
comes together with explicit expressions for rheological parameters in terms of microscopic
characteristics of the underlying particle suspension.

1.2. Informal statement of main results. We start from the following dimensionless
Doi—Saintillan—Shelley model describing suspensions of (active or passive) Brownian rigid



rod-like particles in a Stokesian fluid,

Re (Qpue + (ue - V)ue) — Aue + Vp, = h+ Ldiv(oq[f2]) + div(oa[fs, Vue]),

O f- + divy ((ue + Uon) f2) + divy (1 (Vu)nfe) = pAufe + 1A, 1, (1.3)
div(ue) =0,
in terms of the elastic and viscous stresses
oi[f] = M (n@n—31d)f(-,n)dn, (1.4)
gd-1
oo[f, Vu] = )\/d (n®@n)(Vu)(n®@n) fdn, (1.5)
Sd—1

where € := Wi > 0 stands for the Weissenberg number, Re > 0 is the Reynolds number,
Pe > 0 is the so-called Péclet number, and where the source term A is taken to be smooth
and accounts for internal forces. The state variable n in the kinetic Fokker—Planck equation
describes the orientation of rigid particles on the unit sphere, hence n € S¥!: we write A,
and div,, for the Laplace Beltrami operator and the divergence on the sphere S¢!, and we
also use the short-hand notation 7 := Id —n ® n for the orthogonal projection onto n.
The above system is introduced in detail in Section 2, where in particular the constants
Up, A, 0 € R are further described. The Doi model for passive suspensions is recovered
for the special choice Uy = 0 and 6 = 6. We set this model for simplicity in a finite box
T? = [0, 1)d with periodic boundary conditions, and consider space dimension d = 2 or 3.
Note that we take into account a non-vanishing spatial diffusion O(%) in (1.3), which
differs from the setting usually considered in applications where Pe = oco: a nontrivial spatial
diffusion Pe < oo is actually needed in the present work for technical well-posedness reasons.
Due to this spatial diffusion, the structure of ordered fluid equations needs to be slightly
adapted, leading to the nonstandard definition of Rivlin—Ericksen tensors in (1.8) below;
see Section 3 for details. This is reminiscent of the version of the Oldroyd—B model with
stress diffusion that is often considered both for analytical and numerical studies [RT21].

Our main result is the following asymptotic validity of second-order fluid models. We
refer to Theorem 4.2 in Section 4 for a more detailed statement, including the precise
well-preparedness requirement for kinetic initial data, as well as the explicit expression
for the effective coefficients u, v, 1,9 and their rheological interpretation. New results on
the well-posedness of the kinetic model (1.3) and of the second-order fluid model (1.8) are
postponed to Sections 2 and 3, respectively.

Theorem 1.1 (Informal statement of the main result). Consider either the Stokes case
Re = 0 with d < 3, or the Navier—Stokes case Re = 1 with d = 2. Given an initial particle
density f° € C®° NP(T? x ST1) that is well-prepared in a sense that will be clarified later
(see Assumption J.1), and given also an initial fluid velocity u® € C°°(T4)? with div(u®) = 0
in the Navier—Stokes case, consider a weak global solution (ue, fe) of the Cauchy problem
for the Doi-Saintillan—Shelley model (1.3). For all T > 0, provided that

ekl and M(1+4Pe) <« 1 (1.6)
are small enough, the fluid velocity u. satisfies

Hv(ua - aa)HLZ(O,T;LQ(Td)dQ) ,S 62, Zf Re = O,
<

||u5 - aEHLOO(O,T;LZ(Td)d) + ||V(u€ - ae)HL2(O,T;L2(Td)d2) 627 Zf Re = 1,
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and the particles’ spatial density p. = de,l fe(,n) dn satisfies

e = PellLe o,mL2(ray) + 1V (Pe = Pe)llLzo,r2(rayey < e,

where (g, ps) solves the following (non-standard) second-order fluid equation
Re(0; + @ - V). — div(ce) + Vpe = h+ O(e?),
(8¢ + e - V)pe — (5= + ev) Ape = O(€?),
Ge = (14 ppe) A1 (te) + e Ay(Te, pe) + ev2pe A1 (@),
div(ue) = 0,

(1.7)

for some explicit coefficients y,v,v1,7v2 € R, where Aq(u) :=2D(u) = (Vu)T + Vu is the
strain rate and where Al is a (non-standard) inhomogeneous, diffusive version of the second
Rivlin-Ericksen tensor, defined by

Ay(p,u) = (0 — 2=A+u-V)(pAi(u) + p((Vu)TAl(u) + A1 (u)(Vu)). (18&

Remark 1.2. A few comments are in order:

(a) The well-preparedness assumption for the initial kinetic data will be clarified later on
in Assumption 4.1. Informally, it amounts to assuming that initial data are locally
at equilibrium with respect to the dynamics of orientations and are perturbatively
compatible with the formal e-expansion. It allows to avoid initial boundary layers.

(b) The existence of global weak solutions for the Doi-Saintillan-Shelley model (1.3), which
is assumed to hold in the above statement, is indeed proven in Section 2.2 below. We
further establish a new weak-strong uniqueness principle for this system, which implies
some stability that is at the very heart of the above result.

(c) Although the second-order fluid model (1.7) is well-known to be ill-posed when-
ever 1 < 0 (which is indeed the case for relevant effective parameters), we can define
several well-posed notions of approximate solutions that only satisfy (1.7) up to higher-
order O(e?) errors. This discussion is postponed to Section 3, where we present two
approaches to fix this issue: First, we introduce the notion of approximate hierarchical
solutions, which naturally appear as low-Wi expansions; see Propositions 3.2 and 3.4.
Second, by means of a Boussinesq-type perturbative rearrangement, we additionally
provide a reformulation of second-order fluid equations in terms of a closed well-posed
system; see Proposition 3.3.

(d) The explicit expression for the effective second-order fluid coefficients pu, v, v1,72 is
postponed to Section 4, where we further describe the rheological properties of the
obtained macroscopic fluid model. The expressions for the coefficients agree with
those computed in [HL72; Bre74| in the case of passive suspensions. Moreover, they
qualitatively match experimental data and formal predictions on active suspensions.

(e) A similar result could be obtained with the same approach when starting from the
co-rotational kinetic FENE model for elastic polymers (see e.g. [LM07| for a review of
this system). For conciseness, we do not repeat our analysis in that setting and leave
the adaptation to the reader. O

1.3. Previous results. We briefly review previous rigorous results related to the multiscale
description of particle suspensions and related systems.



Derivation of the Doi—-Saintillan—Shelley model. The systematic theoretical study of the
effective rheology of suspensions has been initiated by Einstein [Ein06|, who found that
passive non-Brownian spherical rigid particles effectively increase the fluid viscosity by ggb,u,
where ¢ is the volume fraction of the particles and p is the viscosity of the solvent.
Jeffery [Jef22] studied the analogous problem for ellipsoidal particles and found an increase
of the viscosity depending locally on orientations of the particles. By slender-body theory,
in the limit of very elongated particles, Jeffery’s viscous stress exactly takes the form of o9
in (1.3); see e.g. [Bre74; KK13]. Starting in the 1930s, there is a vast literature in physics
on the rheology of suspensions of non-spherical rigid particles, see e.g. [Kuh32; Eis33;
Pet38; Bur3g|, but this early work was restricted to specific fluid flows like simple shear,
and Brownian effects were neglected. Brownian particles were first considered in [Sim40;
KK45; RK50; Saib1], by means of different models and justifications, finally leading to the
additional elastic stress o1 in (1.3). These models were largely reviewed in [LH71; HL72;
Bre74]: in particular, the multiscale kinetic model (1.3) in the passive case (Uy = 0, § = 6)
then entered textbooks such as [DE88; Gral8| and became known in the mathematical
literature as the Doi model. The extension to active suspensions has been proposed by
Saintillan and Shelley [SS08]: by coarse-graining force dipoles exerted by the particles
on the fluid, they derived a further contribution of the elastic stress o7 due to particles’
activity; see also [HABKO8; Hai+09; Sail0Ob; PRB16; DVY19].

On the mathematical side, the derivation of the viscous stress o9 from microscopic models
has received considerable attention in the last years. When the fluid is modeled by the
Stokes equations and the particle distribution is given, the effective increase of the fluid
viscosity is by now well understood [HM12; NS20; GVH20; HW20; DG23b; GV21; GVH21;
DG21; GVM22; Due22; DG23al; see [DG22] for a review. In a similar setting, for active
suspensions, the elastic stress o1 has been derived in [GL22; BDG22|. Yet, non-Newtonian
effects originate from the retroaction of the fluid on the particles, that is, from coupling the
particle density to the fluid flow: beyond the derivation of o1 and o9 in the static setting,
the derivation of kinetic equations for the particle density in the time-dependent setting is
of key interest. First steps in that direction have been undertaken in [HS21; HMS24; Due23|.
Finally, regarding the derivation of the passive part of the elastic stress o7 for Brownian
particles, we refer to [HLM23|, where the authors start from a simplified microscopic model
where the particle dynamics is given by Brownian motion and not coupled to the fluid.

In a different direction, we also mention recent work [HS10; AO22; CZDGV22|, where
the (linear) stability and mixing properties of the Doi-Saintillan—Shelley model have been
investigated (neglecting however the viscous stress o2).

Macroscopic rheology and formal closures. Most of the above-mentioned works in the physics
literature on the derivation of the Doi model do not stop at multiscale models but also aim at
macroscopic non-Newtonian models, as well as at explicit calculations of stresses in specific
flows such as simple shear. In particular, they typically give formulas for the shear viscosity
in simple shear flow for very large or very small Weissenberg number Wi. Normal-stress
differences (see (3.6) below) have also been computed at small Wi by Giesekus [Gie62],
showing that the elastic stress o1 does not contribute to the second normal-stress difference
but that the viscous stress does. This was in contradiction with Weissenberg’s original
conjecture that all real-world fluids must have vanishing second normal-stress difference, a
conjecture that was later falsified also through experiments. Hinch and Leal [LH71; HL72|
systematically computed expansions for the stress in simple shear flow both at small and at
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large Wi. They also noticed that their findings at small Wi agree with second-order fluid
models, but they did not investigate whether this holds in more general fluid flows.

Although no exact macroscopic closure is available for the Doi model in the general non-
perturbative setting, formal approximate closures have been studied for example in [DESS,
Chapter 8.7]. A particular instance is the Oldoyd-B model, which is well-known to be
remarkably an exact macroscopic closure for the kinetic Hookean dumbbell model; this
formal connection was made rigorous in [DS23] (in the stress-diffusive case). For the Doi and
Doi—Saintillan—Shelley models, an exact closure is not available, thus raising the question
whether macroscopic closures are at least asymptotically valid in some scaling regimes:
for instance, we will see that the validity of the Oldoyd—-B closure already fails at order
O(Wi) for the Doi model in the small-Wi regime (see Remark 3.1). The situation is very
similar for kinetic FENE models for elastic polymers: no exact macroscopic closure holds,
but the so-called FENE-P model is still a very popular formal approximate closure (see
e.g. [BDJ80], where the name FENE-P is attributed in reference to an earlier paper of
Peterlin [Pet66]).

Small-Wi regime and hydrodynamic limits. At small Wi, the Doi-Saintillan—Shelley sys-
1

tem (1.3) undergoes a strong diffusion in orientation (cf. factor 2 = &= in front of A,): to
leading order, the orientations of the particles relax instantaneously to the steady state,
which corresponds to isotropic orientations. While this leading order amounts to a trivial
Newtonian behavior, next-order O(W1i) corrections encode nontrivial non-Newtonian effects
where the stress starts to depend on the local fluid deformation and its history. The formal
perturbative expansion in powers of Wi is comparable to the Hilbert expansion method in
the Boltzmann theory [Hill12; Caf80; Gol05; SR09], where one looks for a solution of the
Boltzmann equation as a formal power series in terms of the Knudsen number Kn <« 1 and
where the leading-order approximation simply leads to compressible Euler equations. From
the closely related Chapman—Enskog asymptotics expansion, one can (formally) obtain
compressible Navier—Stokes equations as a O(Kn) correction to the compressible Euler
system, up to O(Kn?) errors (see e.g. [Gol05, Section 5.2] or [SR09, Section 2.2.2]). In a
similar way, for the Doi model, second-order fluid equations are obtained in this work as a
O(Wi) correction to the Stokes equations, up to O(Wi?) errors.

Our results can be compared with corresponding results for the Doi—Onsager model for
liquid crystals, which indeed shares some similarities with the Doi model that we consider
in this work. In [EZ06; WZZ15|, the macroscopic Ericksen—Leslie system is derived from
the Doi-Onsager model by means of a Hilbert expansion. Note however that in that case
the leading term in the expansion already yields a non-trivial system, so that higher-order
corrections are not investigated in [EZ06; WZZ15|. We also mention recent related work on
hydrodynamic limits for alignment models [DM08; DFMA17; DFMAT19; DFL22] and for
flocking models [KMT15; KV15; FK18|, as well as a preliminary result for kinetic FENE
models for elastic polymers [LPDO02].

Note that hydrodynamic limits have been investigated also for various other kinetic models
for particle suspensions in different settings: for instance, in the context of sedimentation
for small inertial particles, let us mention the inertialess limits studied in [Jab00; H6f18;
HKM23; Ert23], as well as the high-diffusion limit in velocity investigated in [GJV04a;
GJV04b; MV08; SY20].

1.4. Structure of the article. The article is split into five main sections, in addition to
three appendices containing proofs of secondary results:



In Section 2, we give a detailed account of the Doi—Saintillan—Shelley model: we describe
the non-dimensionalization leading to its form (1.3), and we state a new well-posedness
result for this system, see Proposition 2.1, which we prove in Appendix A.

Section 3 provides an introduction to ordered fluid models, starting with their basic
non-Newtonian rheological properties. We then discuss the ill-posedness of second-order
fluid equations for the relevant range of coefficients, and we present two approaches
to fix this issue: we introduce hierarchical solutions in Proposition 3.2 and we define
a Boussinesq-type perturbative rearrangement in Proposition 3.3. As we allow the
suspended particle density to be spatially inhomogeneous in general, and as we include
a non-vanishing spatial diffusion O(ﬁ) in the model for technical reasons, we actually
derive ordered fluid models of the form (1.7), which slightly differ from their standard
version: we motivate and introduce these nonstandard models in Section 3.4 and give
the corresponding definition of hierarchical solutions in Proposition 3.4. The proofs of
Propositions 3.2, 3.3 and 3.4 are postponed to Appendix B.

In Section 4, we provide a more detailed formulation of our main result on the derivation
of second-ordered fluid equations from the Doi-Saintillan—Shelley theory at small Weis-
senberg number, see Theorem 4.2. We further comment on the derivation of higher-order
fluid models, for which details are postponed to Appendix C.

In Section 5 we prove our main result, that is, the rigorous e-expansion of the solution
(ue, fe) of the Doi-Saintillan—Shelley system (1.3).

Notations. We summarize the main notations that we use in this work:

We denote by C' > 1 any constant that only depends on the dimension d and possibly
on other controlled quantities to be specified. We use the notation < for < C'x up to
such a multiplicative constant C. We write < (resp. >) for < C'x (resp. > C'x) up to a
sufficiently large multiplicative constant C'. When needed, we add subscripts to indicate
dependence on other parameters.

For a vector field u and a matrix field S, we set (Vu);; := Vju,, Sg; = Sji, D(u) ==
1(Vu + (Vu)T), and div(S); := V;S;; (we systematically use Einstein’s summation
convention on repeated indices).

We denote by dn the (not normalized) Lebesgue measure on the (d — 1)-dimensional
unit sphere S¥!, and we denote its area by wy := [Sy_1|. Differential operators with a
subscript n (such as div,, and A,,) refer to differential operators on S%~!, endowed with

the natural Riemannian metric.

For n € S¥~!, we denote by w# :=Id —n ® n the orthogonal projection on n'.

We let (g)(z) := fga1 g(z,n)dn = wid Jsa-1 9(z,n) dn be the angular averaging of a
function g on T¢ x ST~ We also use the short-hand notation Pi*g := g — {g).

We denote by H¥(T?) (resp. H*(T¢ x S¥1)) the standard L? Sobolev spaces for functions
depending on z € T? (resp. (z,n) € T? x S%°!), and we use the notation || - | i
(vesp. || - [|gx ) for the corresponding norms. For time-dependent functions, given a
Banach space X and ¢ > 0, the norm of L”(0,¢; X) is denoted by || - Ly x-

The space of probability measures on T¢ (resp. on T¢ x S%~1) is denoted by P(T¢) (resp.
by P(T¢ x S%-1)).
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2. DOI-SAINTILLAN-SHELLEY THEORY

For simplicity, we focus in this work on systems in a finite box T¢ = [0, 1)? with periodic
boundary conditions. In terms of the fluid velocity field u: Rt x T4 — R¢ and of the
particles’ position and orientation density function f: Rt x T¢ x S%~!1 — RT, we consider
the so-called Doi—Saintillan—Shelley kinetic model for a suspension of very elongated, rigid,
active particles in an incompressible viscous fluid flow (see [DE8S, Chapter 8| and [Sail§]),

pa(0r +u - V)u — pugAu+ Vp = h+div(o1[f]) + div(oz[f, Vu)),
O f + divy ((u+ Von) f) + divy, (7 (Vu)nf)

= Dtrdlvx((ld +n & n)fo) + DroAnfv (21)
div(u) =0,
where elastic and viscous stresses are respectively given by
oilf] = (3kpO + aua|Vo|?) / (n®n—11d)f(-,n)dn,
sd—1
olf V] = A /S(n @ 1) : D(w)(n @ n) f(-,n) dn, (2.2)

where h is an internal force, and where the different parameters pq, pg, D, Dro, Gros Vo, £ are
all assumed to be constant. In this kinetic description, pg stands for the fluid density, ug for
the solvent viscosity, Dy, and D, for the translational and rotational diffusion coefficients,
(o for the rotational resistance coefficient, V4 for the self-propulsion speed of the particles,
and £ for the length of the particles. The fluid flow is coupled to the kinetic equation for the
particle density via the additional stresses o1 (elastic stress) and oo (viscous stress), which
make the fluid equations non-Newtonian. We briefly describe the structure and physical
origin of these contributions (see Section 1.3 for references):

— The viscous stress oy arises from the rigidity of suspended particles in the fluid flow: it
is formally understood by homogenization of the solid phase, viewed as inclusions with
infinite shear viscosity in the fluid. The above expression (2.2) is an approximation for
very elongated particles: for general axisymmetric particles, the viscous stress involves
additional terms depending on the precise shape of the particles (see e.g. [HL72| for
spheroids), but slender body theory indeed shows that it reduces to the above form in
the limit of very elongated particles (see e.g. [KK13, Section 3.4]).

— The elastic stress oy contains a passive and an active contribution. The passive part,
proportional to the the Boltzmann constant kp and to the absolute temperature O,
is created by the random torques that are responsible for the rotational Brownian
motion of the particles. These torques indeed create stresses due to the rigidity and
anisotropy of the particles. On the other hand, the active part arises directly from the
swimming mechanism, which is encoded in the parameter a € R: a so-called puller
particle corresponds to a > 0, and a pusher particle corresponds to o < 0.

For Vj = 0, the model (2.1) reduces to the classical Doi model for passive Brownian parti-
cles [DESS|. Finally, for very elongated particles in 3D, we also note that the translational
and rotational diffusion and resistance coefficients are asymptotically given as follows



10

(see [Dho96, Section 5.15]),

o — g

Dr = ECBro + Dact7 Cro - 3log(¢/a)’ (2 3)
kp© ( = aﬂ |

Dtr gr ’ tr log(¢/a)’

where a is the width of the particles and where D,¢; is some possible active contribution

to the rotational diffusion (tumbling). Compared to the above model (2.1), we henceforth

make two minor simplifications:

— While the translational diffusion in (2.1) is proportional to Id +n ® n, hence is twice as
strong in the direction of particle orientation as in the orthogonal directions, we choose
to neglect this O(1) difference and assume that the diffusion is isotropic. This choice is
for simplicity and does not change anything in the analysis of the model.

— It has been observed in the seminal work [BB72| that, for the example of E. coli bacteria
and related microswimmers, the contribution of thermal rotation and active tumbling is
of the same order, and we therefore set D, = 0 for simplicity.

2.1. Non-dimensionalization and relevant regimes. We non-dimensionalize the above
model (2.1) (after the two above-described minor simplifications), in terms of the typical
speed ug of the fluid, the typical macroscopic length scale L, and the typical number N of
particles in a cube of side length L. We further rescale time according to the time scale of
the fluid flow, that is, T'= L/ug. More precisely, we define
u(t,x) = %u(Tt,LJ:), ft,x) = LWdf(Tt,L:E), h(t,z) := ML—;h(Tt,L:E).
This leads to the following dimensionless model, dropping the hats for simplicity,
Re(0y +u-V)u— Au+ Vp = h+div(o1[f]) + div(ez[f, Vu]),

Ocf + divy ((u+ Uon) f) + divy (my (Vu)nf) = peAaf + wrlnf,

div(u) =0,
where the dimensionless counterparts of the additional stresses o1, 02 now take the form
) = G+ [ (mon—41a)fe.n)dn
oo[f, Vu] = )\/d (n®@n)(Vu)(n®@n) f(-,n)dn.
Sd-1

Here, Re, Pe, Wi > 0 stand for the so-called Reynolds, Péclet, and Weissenberg numbers,
A > 0 depends only on the shape and number density of the particles, and v € R accounts
for the active contribution to the stress. More precisely, these parameters are given by

_ uglL _ GroN
Re = pﬂﬂ; , A = TRL

_ uoL(r s UoCro
Pe = H0 Wi = FpOL

_ [Uo |¢2 W
Y= aN Ld|—1> UO = ﬁv

and we briefly comment on their range and interpretation:

— The Weissenberg number Wi is the ratio between convection and relaxation time scales.
For the kinetic viscoelastic models under consideration, it coincides with the rotational
Péclet number. For elongated particles in 3D, as (; is proportional to the cube of the
particle length, cf. (2.3), the regime when Wi is of order O(1) is very narrow, and lies
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under standard flow conditions at particle lengths of around 10 microns. In this work,
we are interested in the derivation of hydrodynamic approximations in case of very small
Wi « 1: this means that we have applications in mind where the particles have a length
of a few microns and below, which is in particular the case for many types of bacteria.
For notational convenience, we rename the Weissenberg number as

e = Wik 1.

The (translational) Péclet number Pe is typically much larger than its rotational

counterpart Wi since'

Pe _ (ul? _ 6L2
Wi T he = o > L

In fact, from the application-oriented perspective, it makes sense to consider Pe > 1.
However, due to well-posedness and stability issues, our analysis crucially relies on
keeping Pe not too large, and we shall generally assume Pe ~ 1. We can actually allow
for Pe to slightly diverge, but more slowly than the inverse of the volume fraction of the
particles, cf. (1.6).

The shape parameter A is typically quite small as it is proportional to the volume
fraction NL™% of the particles.

— The prefactor in the viscous stress o reads

A DY [Vole?p
b7 +7 = W(G%—Qa zB®ﬂ>,

2
where the term % is of order 1 — 10 for typical microswimmers like E. coli bacte-

ria [BB72]. We shall set for abbreviation

6 := 6+ 2a/\0000 (2.4)

Note in particular that for passive particles Vy = 0 we find 6 = 6.

The self-propulsion speed Vj of active particles is typically around 10 micron per second.

This is so slow with respect to typical shear flows considered in experimental settings
that the ratio Uy = uzg is typically tiny. However, extremely low shear rates leading
to ug ~ Vp can possibly also be achieved, as for instance in the experiments reported
by [Lop-+15]. For that reason, we choose not to neglect Up in the equations and to keep
track of its effects.

In conclusion, we are led to consider the following system,

Re(0; + ue - V)us — Aue + Vpe = h+ Ldiv(oq[f.]) + div(oa[fs, Vue]),
O f + divm((wE + Uon)fg) + div, (w#(VuE)nfa) = ﬁAzfe + %Anfs,
div(ues) =0,

(2.5)
Jpaue =0 if Re =0,
o1lf] =0 Jea—s (n@n — 1) f(-,n) dn,
o2lf, Vu] = A fga-i (n @ n)(Vu)(n @ n) f(-,n)dn,
which is complemented by initial conditions
felemo = f2. 26)
Ue|t=0 = u® if Re # 0,

IThe same holds with an additional logarithmic correction in 2D.
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and we consider the asymptotic limit € | 0 in the regime with A < 1 and with A0 < 1 small
enough. Regarding the Reynolds number, we focus on Re € {0, 1} for simplicity. Due to
classical regularity issues for the Navier—Stokes equations, we actually limit ourselves to
the Stokes case Re = 0 for the 3D model, but we also study the Navier—Stokes case Re = 1
in 2D. Note that the 3D Navier—Stokes case is much more complicated and is not discussed
in this work as the well-posedness of the system is still open in that case.

2.2. Well-posedness of the Doi—Saintillan—Shelley model. The system (2.5) is an in-

stance of the more general class of Fokker—Planck—Navier—Stokes systems, but we emphasize

two main peculiarities:

— We include in (2.5) the contribution of the viscous stress oy, which arises from the
rigidity of underlying suspended particles on the microscale and effectively modifies the
solvent viscosity.

— We also include the effect of particle swimming via Uy. This creates local changes in
the spatial density p. = de,l fe(-,m) dn, which no longer remains constant in general.

In contrast, most previous works have focused on the corresponding model without viscous
stress g and without particle swimming Uy = 0. In that simplified setting, for the 3D
Stokes case, the existence of global entropy solutions was proven in [OT08|, and the global
well-posedness of smooth solutions was proven in [CS10| (without translational diffusion,
Pe = 00). In the Navier—Stokes case, corresponding well-posedness results were obtained
for instance in [CMO8]. The model including the viscous stress o3|f., Vu.| but without
particle swimming Uy = 0 was first studied in [LMO7], where the existence of global weak
solutions was proven for the Navier-Stokes case in 2D and 3D (without translational
diffusion, Pe = c0). We also refer to [Lal9] for the global well-posedness of smooth solutions
in the 2D Navier—Stokes case. Particle swimming Uy # 0 was first considered in [CL13],
where the authors studied the corresponding model without viscous stress oo and proved
the global existence of weak entropy solutions both for the Stokes and Navier—Stokes cases
in 2D and 3D, as well as the existence of energy solutions for the Stokes case and their
uniqueness in 2D.

Building on similar ideas, we can actually establish the existence of global energy solutions
for the full model (2.5) in the 2D and 3D Stokes cases, as well as in the 2D Navier—Stokes
case, and we further obtain a weak-strong uniqueness principle. To our knowledge, this
is surprisingly the first result where both the viscous stress and the swimming forces are
included at the same time. The proof is postponed to Appendix A.

Proposition 2.1. Consider either the Stokes case Re = 0 with d < 3, or the Navier—Stokes
case Re = 1 with d = 2. Given e > 0, given h € L (RT; L2(T9)), given an initial condition
fo e L2NP(T? x S, and given also u® € L2(T4)?® with div(u®) = 0 in the Navier-Stokes
case, the Cauchy problem (2.5)~(2.6) admits a global weak solution (u., fe) with:
(1) in the Stokes case Re =0, d < 3,
ue € LR H(TYY),
foo€ L (RTL2NP(TY x S ) NLE(RT; HY(TY x 1))
(ii) in the Navier—Stokes case Re =1, d = 2,
us € L (RT3 LA(T%)?) N L (RT HY(T?)?),

fo € LE(RTL2NP(T? x YY) NLE (RT; HY(T? x St)).

loc loc
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In both cases, a weak-strong uniqueness principle further holds: if (ue, f-) and (ul, fl)
are two such global weak solutions with identical initial conditions, and if (ul, f!) has the
following additional reqularity,

up € L (R Whee(Th)),

)

foe L (R L(T? x §1),
then we have (ug, fe) = (ul, f1). ¢

3. ORDERED FLUID MODELS

Various non-Newtonian fluid models have been considered in the literature, taking into
account nonlinear and memory effects in different ways on the macroscopic scale. We
focus here on so-called ordered fluid models, which will indeed be shown to naturally
appear as hydrodynamic approximations of the Doi-Saintillan—Shelley theory. We start by
defining such models and reviewing their non-Newtonian properties; for more details on
modelling aspects and applications, we refer to [DR95; Boh87; BAH87; Jos13; PTMD13].
Next, we develop a perturbative well-posedness theory and we introduce (non-standard)
inhomogeneous, diffusive versions of these models.

3.1. Standard ordered fluid models. Ordered fluid equations are of the form

{ Re(0: +u-V)u—div(e) + Vp =h,

div(u) =0, (3-1)

where o is a function of the Rivlin-Ericksen tensors { Ax(u)}x defined iteratively through
Ay(u) := 2D(u) = Vu+ (Vu)T,

Api1(u) == (O +u-V)An(u) + (Vu)T A, (u) + Ay (v) Vu, n > 1. (3.2)

In other words, A, +1(u) is the so-called lower-convected derivative of A, (u), which ensures

frame indifference of the equations.”? While first-order fluids are of the form (3.1) with

constitutive law o = ng A (u), thus coinciding with standard Newtonian fluids, second-order
fluids are of the form (3.1) with

o = noAy(u) + a1 ds(u) + azAi(u)?, (3.3)
see e.g. [Boh87, Eq. (8.48)], and third-order fluids amount to

o = oAy (u) + a1 As(u) + ag A; (u)?
+ BrAs(u) + B2 (A1 (u) Az (u) + Az(u)A1(u)) + BsAy(u)tr(Ar(u)?), (3.4)

2In the literature, upper-convected instead of lower-convected derivatives are sometimes used to define
ordered fluids (see e.g. [BCAH87, Section 6]). This is merely a choice of convention, as both lead to
equivalent fluid equations (although the value and interpretation of parameters of course depends on the
chosen convention). Indeed, the upper-convected derivative of A, (u) can be rewritten in terms of the
lower-convected derivative as

(O +u-V)An(u) — Ap(u)(Vu)" — (Vu)An(u) = Apyr(u) — (A1 (u)An(u) + An(u)Ar (u)).
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for some coefficients g, a1, as, 1, B2, B3 € R.? Since third- and higher-order fluid models
are fairly complicated and involve a lot of terms, the most widely used ordered fluid model
for viscoelastic fluids is the second-order model (3.3).

We briefly recall the basic rheological properties of these ordered fluid models depending
on the different parameter values; we focus here on the 3D setting. The coefficient ng > 0
in (3.3) and (3.4) is the zero-shear viscosity, as in the first-order (Newtonian) model, while
other parameters account for various non-Newtonian behaviors.

— Shear-dependent viscosity: In a simple shear flow ug(t, x) = kxoe; with shear rate k > 0,
the shear-dependent viscosity is defined as
012

= —. 3.5
n(x) - (3.5)
Noting that
010 100 000
Aj(ug)=r |1 0 0, Aj(u)*=r*[0 1 0], As(ug)=x*[{0 2 0],
000 000 000

we compute for the second-order fluid that the shear-dependent viscosity simply coincides
with the zero-shear viscosity, (k) = ng. For the third-order model, in contrast, we find
a nontrivial shear-dependent relation,

n(k) = no + 26%(B2 + F3).

Most real-life viscoelastic fluids, and in particular passive dilute suspensions, happen
to be shear-thinning, meaning that the map x +— 7(k) is decreasing: this holds for the
third-order fluid model provided that the coefficients satisfy G2 + 53 < 0.

— Normal-stress differences: In a simple shear flow ug(t, z) = kxge; with shear rate k € R,
non-Newtonian fluids typically display non-zero normal stresses. This is responsible
for a number of phenomena, of which the rod-climbing effect is the best known; see
e.g. [Jos13, Chapter 17| and [BAHS87, Chapter 6]. Normal stress coefficients are defined
as’

Vi «— %, Voo = %, (36)

and thus, for second- and third-order models,

vig = —2aq, V9o = 2aq + Q. (3.7)
In other words, o, s are related to normal stress coefficients via

o] = —%Vlo, oy = vy + Vag. (3.8)

For most real-life viscoelastic fluids, and in particular for polymer solutions, it is found
experimentally that 119 > 0, 99 < 0, and that |vyg| is considerably smaller than ||
(by a factor of around 10, see e.g. [Boh87, Section 2.2] and [PTMD13, Section2.2|),
which means in particular, in terms of second-order fluid coefficients,

oy <0, ag > 0. (3.9)

3In arbitrary dimension d, a further term 84A;(u)? should be included in general in the stress o of
third-order fluids, but it is redundant in dimensions d < 3 as we then have B® = 1 Btr(B?) + 1tr(B*) by
the Cayley—Hamilton theorem for any symmetric trace-free matrix B.

4Beware of different sign conventions for the normal stress coefficients. We follow here the definition
of [B6h87, Chapter 2.2].
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— FElongational viscosity: The apparent viscosity of a non-Newtonian fluid may be com-
pletely different in an elongational flow. Given a uniaxial elongational flow ug (¢, z) =
k(z1€1 — %(1’262 + x3e3)) in the direction ej, the elongational viscosity is defined as

o011 — %(0’22 + 033)

= . 3.10
ne p (3.10)

Noting that

2
Al (’U,()) =k|0 -1 0 y AQ(UO) = Al(uO)Q = /£2
0 0 -1

we compute for the second-order model,

S O =
o = O

0
0], (3.11)
1

ne = 3o + 3k(a1 + a9).
For real-life viscoelastic fluids, it is typically observed that the elongational viscosity
increases with the strain rate (so-called strain-thickening behavior), which holds provided
that coefficients satisfy a1 + ag > 0.
— Retardation phase shift in oscillatory flow: In a simple shear flow u(t,x) = k(t)z2e1
with oscillatory shear rate k(t) = sint, we compute

010 00 0
As(up) =k |1 0 O +x%{0 2 0],
000 00 0

which gives rise to a phase shift for o15 in the second-order model, in form of
1
o1z = Mok + a1k = (1§ + ai)2 sin (¢t + arctan(%)).
This constitutes another typical (time-dependent) non-Newtonian feature, in link with
the dependence of the stress on the flow history.

Remark 3.1 (Connection to Oldroyd-B model). The Oldroyd-B model is a special case of
a simple fluid model, which is particularly popular as a formal exact closure of the kinetic
Hookean dumbbell model. It is characterized by the following constitutive equation for the
stress tensor,

o=2nD(u) +n,m, T4+Wi((0+u-V)r—7(Vu)' — (Vu)r) = 2D(u).  (3.12)

By a formal expansion with respect to Wi < 1, this model is found to agree to order Wi*
with a kth-order fluid model with some specific choice of parameters. In particular, to
order Wi%, we recover the second-order fluid model (3.3) with ap = —2a;, which means
in particular that the second normal stress coefficient vanishes, 59 = 0. We emphasize
that this is not the case for the second-order fluid model that we shall derive from the
Doi-Saintillan—Shelley theory. Hence, at small Wi, the viscoelastic effects of suspensions of
rigid Brownian particles are not well described by an Oldroyd-B model. O

3.2. Non-standard ordered fluid models at Pe < co. In the case of a particle sus-
pension with finite Péclet number Pe < oo, as considered in this work, cf. (2.5), the
Rivlin—Ericksen tensors (3.2) naturally need to be modified as follows,

Al (u) == Ai(u) = 2D(u), (3.13)

a(w) == (0 — ;= A+u-V)A (u) + (Vu)T AL (u) + AL (u)(Vu), n>1,
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hence in particular A} (u) := As(u)— 5= AA; (u). The second-order fluid equations (3.1)-(3.3)
are then replaced by

Re(0y +u - V)u —div(e) + Vp = h,
o =mnoA1(u) + a1 AL (u) + ag Ay (u)?, (3.14)
div(u) = 0.

For higher-order fluid models, in this diffusive setting Pe < oo, several additional tensors
actually need to be included in the stress: for the third-order model, instead of (3.4), the
stress rather needs to be chosen in general as

o = noAi(u) + a1 Ay(u) + azAi (u)® + B Ay (u) + 51 Bj(u)
+ Ba (A1 (u) Ay (u) + Ah(u) Ay () + B3 A1 (u)tr(Ar(w)?), (3.15)
in terms of the following additional tensor,
Biu) = (0 — A +u- V)4 ()2 + (V)" Ay (w)? + A) ()*(Va).

At infinite Péclet number Pe = oo, this additional tensor is indeed redundant as it reduces
to Bi(u) = A1(u)Aa(u) + Aa(u) A1 (u) — A1 (u)?, so we recover (3.4).°

3.3. Well-posedness of ordered fluid models. We focus for shortness on the second-
order fluid model. There has actually been a fair amount of confusion on the relevant
range of parameters v, aa: the sign condition o < 0 in (3.9) is motivated by experimental
normal stress measurements, but it actually appears inconsistent with thermodynamics; see
e.g. [DR95] for a detailed discussion from the physics perspective. From the mathematical
point of view, this inconsistency leads to ill-posedness issues. The matter was investigated
by Galdi [Gal95|, who showed the following for the second-order fluid equations (3.1)—(3.3)
at infinite Péclet number Pe = co:

— the local-in-time well-posedness holds whenever 1/a; > —\1, where \; stands for the
Poincaré constant in T¢, which is quite consistent with the choice (3.9) (although the
case of a negative ar; with a small absolute value is prohibited);

— the long-time well-posedness, as well as the stability of steady solutions, can only hold
provided that a; > 0.

For the corresponding system (3.14) with finite Péclet number Pe < oo, the situation is
even worse: even local-in-time well-posedness actually fails whenever a; < 0 because the
equation then behaves like a backwards heat equation. Yet, even though the kinetic Doi
model itself is known to be thermodynamically consistent (see [DE88, Chapter §|), our
analysis will precisely lead us to a second-order fluid with a1 < 0, and it is thus crucial
to determine what meaning should be given to the model in that case. In fact, we shall
derive (3.14) in the small-Wi limit, ¢ := Wi <« 1, with

(o1, a2) = (e71,€72),  for some 11 <0, 12 €R. (3.16)
In this perturbative setting € < 1, although the equation is ill-posed for fixed ¢, there are

several ways to rearrange the nonlinearity and define well-posed notions of approximate

SRecall that, as in (3.4), a further term 44, (u)® should always be included in the stress in arbitrary
dimension d, but it reduces to 38541 (u)tr(A1(u)?) in dimensions d < 3.
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solutions that only satisfy the system (3.14) up to a higher-order O(£?) remainder:
Re(0; + @ - V)i — div(ce) + Vpe = h+ O(e2),
o 1= noAi(ue) + ey Ay (i) + ey2 A1 (ue)?, (3.17)
div(as) = 0.

These notions of approximate solutions will be viewed as proper perturbative ways to
interpret second-order fluid equations and settle ill-posedness and instability issues.

The simplest way is to define a notion of approximate hierarchical solutions. It is
particularly convenient for us in this work due to its close relation to the Hilbert expansion
method that we use for the hydrodynamic approximation. The proof is straightforward
and is postponed to Appendix B.

Proposition 3.2 (Hierarchical solutions). Consider the system (3.17) in the regime ¢ < 1
with parameters ny, Pe > 0 and v1,v2 € R. If vg,v1 are smooth solutions of the following
two auxiliary systems,

Re (8,57)0 + (7)0 . V)’Uo) — nolAvg + Vpo = h,
div(vo) = 0, (3.18)
voli=o =u° fRe#0, [ravo=0 ifRe=0,

Re (&gvl + (v - V)v1 + (v1 - V)vo) —noAvy + Vpy

= div(v145(vo) + 241 (v0)?), (3.19)
diV(Ul) = 0, .
vili=0 =0 ifRe#0, [rav1=0 ifRe=0,

then the superposition . := vg + €vy indeed satisfies the system (3.17) with some controlled
error term O(g%) (and with initial condition c|—o = u® if Re # 0). For the well-posedness

of (3.18) and (3.19), we separately consider the Stokes and Navier—Stokes cases:
(i) Stokes case Re =0, d < 3:
Given s > %— 1 and h € LS (RT; H*(T4)?) ﬁVVli’Coo(]RJr; H*72(TY), there is a unique

global solution vy € L2 (RT; H*2(T44) of (3.18), and a unique global solution

vy € L2 (RT; H3H(T9)?) of (3.19), leading to 1. = vy +evy € LS (RY; H5FH(T4)d).
(ii) Navier-Stokes case Re =1, d = 2:

Given s > 0, h € L3 (RT; H3(T?)?), and u® € H*T1(T?)? with div(u®) = 0, there is
a unique global solution vy € L (RY; H5T1(T?)2) N LE (RY; H5T2(T?)?) of (3.18),
and a unique global solution vy € LS (R*; H*(T?)2) N LE (RT; H31(T?)2) of (3.19),
leading to . = vo + evy € LS (RT; H3(T?)2) N LE (RY; HHL(T?)?). O

There are also non-hierarchical ways to perturbatively make sense of the ill-posed second-
order fluid model (3.17), which may be more desirable in particular for stability issues.
Comparing to corresponding ill-posedness issues in the Boussinesq theory for water waves,
we recall that there is a standard way to rearrange the ill-posed Boussinesq equation
perturbatively and make it well-posed, see [CMV96]: in a nutshell, the idea is to replace
indefinite operators like 1 4+ €A by corresponding positive operators like (1 — eA)~! up to
O(£?) errors. We show that a similar so-called Boussinesq trick can be used in the present
situation as well: for any value of ~1,y2, both at finite and infinite Péclet number, it leads
us to a perturbative rearrangement of the second-order fluid equation that is well-posed and
is indeed equivalent to (3.14) up to O(£?) terms. The so-defined solution is easily checked
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to differ from the corresponding hierarchical solution only by O(e?). We focus here on the
relevant ill-posed case 71 < 0. Note that the procedure is easily extended to higher-order
fluid equations (see also [ABV16; DGR23]| in a different context). The proof is postponed
to Appendix B.

Proposition 3.3 (Boussinesq-like solutions). Consider the system (3.17) in the regime
€ < 1 with parameters ng,Pe >0, y1 <0, and v € R.

(i) Stokes case Re =0, d < 3:
Given s > 4, Ty > 0, and h € L*(0,Tp; H1(T9)4) 0 Wheo(0, Tp; H~H(T4)9),
provided that € < 1 is small enough (depending on s, Ty, h and on all parameters), the
following nonlinear problem admits a unique solution . € L>(0, Ty; HT1(T4)%),

oAz + Vp: = (_1 — e (0 — pA)) b + ediv(Fy(e)), (3.20)
div(ie) =0, [pa e =0,

where we have set for abbreviation
Fo(u) :== ym(u-V)2D(u) + 7 ((VU)T2D(U) + 2D(u)(Vu)) + 'yg(QD(u))z. (3.21)

Moreover, the so-defined solution u. satisfies (3.17) with Re = 0 for some controlled
error term O(g2).

(7i) Navier-Stokes case Re =1, d = 2:
Further assume ng > 5. Given s > 1, Ty > 0, u® € H*(T?)? with div(u®) =0,
and h € L0, To; HY(T?)2), provided that ¢ < 1 is small enough (depending
on s, Ty, u®, h and on all parameters), the following nonlinear problem admits a unique

solution . € L>°(0, Ty; H*(T?)?) N L2(0, Tp; H¥T1(T?)?),

(O + e - V)T — AT — e (0 — 55) A% + Ve
= (1 +em1A)h + ediv(F(ue)),
div(a.) = 0, (322)

ﬂs|t:0 = uo,
where we have set for abbreviation
Fi(u) = 2m1(Vu)" (Vu) + 72(2D(u))*.

Moreover, the so-defined solution u. satisfies (3.17) with Re = 1 with some controlled
error term O(e?) and with initial condition iic|i—o = u°. O

3.4. Models for inhomogeneous suspensions. The above formulation of ordered fluid
models describes the behavior of spatially homogeneous suspensions, that is, the behavior
of fluids with a constant density of suspended particles. This can be naturally generalized
to an inhomogeneous setting to describe non-uniform particle suspensions. Surprisingly, we
were not able to find any account of this generalization in the literature. We emphasize
however that such an inhomogeneous setting should also arise naturally from the small-Wi
expansion of the inhomogeneous Oldroyd-B model, which is the formal exact closure of
the kinetic Hookean dumbbell model. Note that we are still considering an homogeneous
solvent fluid. At infinite Péclet number Pe = oo, the adaptation is straightforward:

6For Mo < ﬁ, the equations would need to be rearranged differently; we skip it here for shortness.
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the fluid equations (3.1) are simply coupled to a conservation equation for the particle
density p := foa1 f(-, 1) dn,”
(O +u-V)p=0,

while the stress o is now a function both of p and of the Rivlin-Ericksen tensors { Ay (u)}x
where non-Newtonian corrections to the pure solvent viscosity ng are taken proportional to
the suspended particle density p. More precisely, the inhomogeneous second-order fluid
model takes the form

Re(0: +u-V)u—div(c) + Vp = h,

(Or+u-V)p=0,

o = (10 +mp)Ai(u) + a1pAs(u) + azpAi(u)?,

div(u) =0,

(3.23)

for some coefficients 71, a1, as € R. Inhomogeneous versions of higher-order fluid models
are formulated similarly.

At finite Péclet number Pe < 0o, on the other hand, the particle density p is no longer
simply transported by the fluid, but rather solves a transport-diffusion equation,

(8t—PieA+u‘V)p:0.

In this diffusive setting, the structure of ordered fluid models becomes slightly more
complicated: due to diffusion, the transport-diffusion operator that appears in the Rivlin—
Ericksen tensors (3.13) at finite Péclet number does not commute with multiplication with
the particle density p. The second-order fluid model then rather takes the form

Re(0y +u - V)u —div(e) + Vp = h,

(O — :=A+u-V)p=0,

o = (10 +mp)Ai(u) + a1 Ay(p,u) + azpAi(u)?,

div(u) =0,

(3.24)

for some coefficients 71, a1, s € R, in terms of the modified inhomogeneous second-order
Rivlin—Ericksen tensor

Ap(p,u) = (O — E=A +u- V) (pAr(u) + p((Vu) A1 (u) + A1 (w)(Vu)). (3.25)

Indeed, due to the diffusion, the latter quantity does not reduce to the Rivlin—Ericksen
tensor defined in (3.13): we have AL (p,u) # pAS(u) in general along solutions — in contrast
with the case of infinite Péclet number.® Similarly, the inhomogeneous third-order fluid
model amounts to (3.24) with stress

o = (no +mp)Ai(u) + a1 Ay (p,u) + az A1 (u)® + B1A5(p, u) + 1 Bi(p, u)
+ B2 (Av(u) Ab(p, u) + Ah(p, u) A () + BapAs (w)tr(Ay (u)?),
in terms of the modified inhomogeneous third-order Rivlin—Ericksen tensor

Ay(pu) = (O — o +u- V) Ay(p,w) + (Vu) " A(p, u) + A)(p,u)(Vu),

"The physical particle density is rather given by x +— fsdfl f(z,n)dn, but for notational convenience we
choose to normalize it by the area of S¥~1. In particular, we have p € wl—d'P(Td).

8At infinite Péclet number Pe = 0o, as the particle density p satisfies (9; +u - V)p = 0, we indeed obtain
(0 +u-V)(pAi(u)) = p(0 +u - V)Ai(u), so that the system (3.24) reduces to (3.23).
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and in terms of the following additional quantity, which needs to be included similarly as
in (3.15) at finite Péclet number,

By(p.u) = (0 — g A+ - V)(pA1(w)) + p((Vu)" A1 () + A1 (w)*(Vu).

We turn to the corresponding well-posedness question for the above inhomogeneous
models. As in the homogeneous setting, we focus for shortness on the second-order
model (3.24), which is again ill-posed whenever a1 < 0. We consider the perturbative case
of a weak nonlinearity,

a1 = e, Qg = €72, ek 1,
and we shall define a well-posed notion of approximate solutions that only satisfy equa-
tion (3.24) up to higher-order O(¢?) remainder:

Re(9; + @ - V)i — div(ce) + Vpe = h+ O(e?),

(0 + G - V)pe — (ps + ep0) Ape = O(e?),

oe = (o + mpe)Ar(te) + EVIA/2<ﬁ€> Ue) + 572141(@6)27
div(ue) = 0.

For later purposes, note that we henceforth increase the diffusion of the particle density by
an additional constant pg > 0, which will appear in our setting as a possible effect of particle
swimming velocities. Similarly as in Proposition 3.2 for the homogeneous case, the simplest
notion of well-posed solutions takes the form of hierarchical solutions as described in the
following statement. The proof is postponed to Appendix B. Note that the regularity theory
for (3.27) below is quite delicate in the 3D Stokes case, as a particularly careful stepwise
argument is needed to first cover low-regularity situations. The notion of Boussinesg-type
solutions of Proposition 3.3 could also be easily extended to the present inhomogeneous
setting, but we skip the detail for conciseness.

(3.26)

Proposition 3.4 (Hierarchical solutions). Consider equation (3.26) with parameters
no,Pe > 0, m,up > 0, and v1,7v2 € R. If (ug, po), (u1,p1) are smooth solutions of the
following two auziliary systems,

Re(8; + ug - V)ug — div(2(no + n1p0) D(ug)) + Vpo = h,

(O — A +ug - V)po =0,

div(ug) =0, (3.27)
uoli=o = u® if Re#0, [rauo=0 ifRe=0,
polt=0 = p°,

Re (9 + o - V)ur + (u1 - V)ug) — div(2(no +mpo) D(u1)) + Vpr
= div(2n1p1 D(uo) + v145(po, uo) + 72(2D(U0))2)7
(0 = peA +uo - V)p1 = polpo — w1 - Vo,

2
div(ul) = O, (3 8>
utli=0 =0 ifRe#0, [rau1 =0 ifRe=0,

Pl|t=0 = Oa

then the superposition (e, pe) = (up +eu1, po+ep1) satisfies equation (3.26) with some con-
trolled remainder O(g%) and with initial condition pe|i—o = p° (and tc|i—o = u® if Re # 0).
For the well-posedness of (3.27) and (3.28), we separately consider the Stokes and Navier—
Stokes cases:
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(i) Stokes case Re =0, d < 3:
Given p° € L2(T%)N widP(']I‘d) and h € L2 (RT; H=Y(T9)?), there exists a unique global
solution (ug, po) of (3.27) with
up € LS (RY; HY(TH?),
po € Lix (RYLA(TY) N LP(TY)) NLE (R H'(T)).
Moreover, for all integers s > % + 1, provided that p° € HS(']I‘d) and that h belongs to
s H™ X this solution further satisfies
Lis.(RF; H7H(RT x T)), this solution furth sfi
uy € Li)(;ic(]RJr. Hs+1(Td)d)
po € Lloc(]RJF HS(Td)) N LIOC(RJF' HS+1(Td))‘

In that case, if furthermore h € WL (RT; HS=3(T?)%), there exists a unique global
solution (uy, p1) of (3.28) with

ur € Lig (RT3 H*HTY)Y),
pr € LiRTHTXTY) NLE (R H*H(TY).
(i1) Navier—Stokes case Re =1, d = 2:
Given p° € L*(T?) N =P(T?), u° € L*(T?)? which satisfies div(u®) = 0, and h €
L2 (R H=Y(T?)2), there exists a unique global solution (ug, po) of (3.27) with
up € L (RTLA(T)?) NLE(RT HY(T?)?),
po € Lige (RTLA(T?) N 5o P(T%) N L (RS HY(T?).
Moreover, for all integers s > 2, provided that p° € H*(T?), v° € H*(T?)?, and
h e L2 (RT; H~Y(T?)2), this solution further satisfies
up € Ly (RY; HO(T)?) N L (R H*TH(T?)?),
po € L (RY; H*(T?)) NLi (RY; HTH(T?)).
In that case, there exists a unique global solution (u1,p1) of (3.28) with
ur € L (RY H72(T?)?) N L (RT HYH(T?)?),
1€ Lig(RT; H(T?)) N Lipe (R H™H(T?)). 0

4. STATEMENT OF MAIN RESULTS

We turn to the precise statement of our main result, that is, the rigorous hydrodynamic
approximation of the Doi—Saintillan—Shelley theory in the small-Wi regime. For simplicity,
we focus on the first-order approximation and the emergence of the second-order fluid
model, but the same analysis can be pursued to arbitrary order (see Section 4.2). More
precisely, we derive the second-order fluid model (3.26) with explicit coefficients

- — )\ 0+2)w —_1 2
No = 1, m )‘Qd(d+gd)la Ho = mU07 (4.1)
M = Mgy 72 = >‘2d2(d+4) (0 + d+2)

where we recall that A, 0, Uy are parameters from the Doi-Saintillan—Shelley system (2.5).
Before formulating a precise result, we introduce a suitable well-preparedness assumption
for initial data. More precisely, in order to avoid initial boundary layers due to the O(%)
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rotational diffusion, we first need to assume that to leading order the initial density is
invariant under this rotational diffusion, which means that it is isotropic to leading order,

Jlem)lco = f2a,n) = p(@) +0(E),  p° € LP(T.

Yet, this is not sufficient: in order to avoid initial boundary layers in the higher-order
e-expansion, we further need to assume that initial data are compatible with the formal
limiting hierarchy, which is precisely the content of the assumption below. Similar issues
are well known for higher-order hydrodynamic expansions in the Boltzmann theory, see
e.g. [Caf80; SK83; Lac87].

Assumption 4.1 (Well-preparedness). Let h € C®° (Rt x T4, let p° € H*(T4)N w%P(Td)
for some s> 1, and let also u® € H*(T%)? with div(u®) = 0 in the Navier-Stokes case. We

assume that the initial condition f.|i—o = f° for the Doi-Saintillan—Shelley system (2.5) is
well-prepared in the following sense: decomposing

felan) = i)+ gilan), g2 = () = o f2Gm)dn € LP(TY),

we have
o (o] l [e]
pi=p"  and  e2]|g2 — (e +€g)li—ollz < Coe®,

for some constant Cy < oo, where g1 and go are the solutions of the hierarchical equa-
tions (5.3) and (5.4) below with initial data p° in the Stokes case and (u°,p°) in the
Navier—Stokes case. O

Note that this well-preparedness assumption is compatible with the positivity fe|i=o > 0
for € small enough, which is necessary to ensure well-posedness of the Doi—Saintillan—Shelley
system (2.5), cf. Proposition 2.1. In these terms, we are now in position to state our main
result, thus finally providing a more detailed statement of Theorem 1.1. The proof is given
in Section 5.

Theorem 4.2 (Small-Wi expansion). Let h € C®(R*T x T et p° € H*(T?) N widP('I[‘d)
for some s > 1, and let also u® € H*(T%)?* with div(u®) = 0 in the Navier-Stokes case.
Denote by (ue, fo) the global solution of the Doi—Saintillan—Shelley model (2.5) as given
by Proposition 2.1 with initial condition f.|i=o = f° € L2NP(T? x S¥1) satisfying the
well-preparedness of Assumption 4.1. Further assume that

A0(1 + Pe)|[p°[|lree < 1

1s smaller than some universal constant.

(i) Stokes case Re =0, d < 3:
Let (e, pe) be the unique global hierarchical solution of (3.26) as given by Proposi-
tion 3.4 (i) with explicit coefficients (4.1). Then we have for all t > 0,

IV (ue — as)HL?Li
”,05 - ﬁa”Lt‘x’ L2 + Hv(pa - ﬁE)HLf L2

where multiplicative constants depend on Pe and on an upper bound on t, \, Uy, and
on controlled norms of h and p°.
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(i1) Navier-Stokes case Re =0, d = 2:
Let (e, pe) be the unique global hierarchical solution of (3.26) as given by Proposi-
tion 3.4 (i) with explicit coefficients (4.1). Then we have for all t > 0,

2,

2,

[tue = te|lpeo 2 + IV (ue — te) |2 12

IZANRZAN

l[pe — ,(_)z-:HLt"o L2+ IV (pe — ﬁz—:)”Lf L2
where multiplicative constants depend on Pe and on an upper bound on t, \, Uy, and
on controlled norms of h, p°, and u°. %

4.1. Non-Newtonian properties of hydrodynamic approximation. We comment
on the rheological features of the obtained second-order fluid system (3.26) with the
explicit parameters g, 71, 40, 71,72 as defined in (4.1), briefly describing the resulting
non-Newtonian properties and how they depend on microscopic features. We focus here on
the physically relevant 3D setting, and we point out that in the passive case the parameter
values agree with [HL72, Eqn (41) and Table 2| and |Bre74, Eqn (7.4)].

o Fffective spatial diffusion:
The spatial diffusion ﬁ of the suspended particle density is enhanced by particles’ activity
even at infinite Péclet number: it is replaced by Pie + epg with pg = éUg. This naturally
follows from the coupling of particles’ swimming velocity with their rotational diffusion.
This phenomenon of increased mixing has been observed in studies such as [SS07; Sail§].

o Modified zero-shear viscosity:
The presence of suspended particles leads to a non-trivial contribution to the zero-shear
viscosity: in the homogeneous setting p. = wid, we obtain a zero-shear viscosity

o =10+ =m =1+ 352 +90).

In particular, in case of passive particles, this zero-shear viscosity is always larger than

the plain fluid viscosity, 79 > 1, while particles’ activity can reverse this effect. For a

precise description, first recall that 8 = 6 + Za%, cf. (2.4), where « characterizes the

swimming mechanism:

— for passive particles o = 0, the zero-shear viscosity is 79 = 1 + %)\ > 1;

— for so-called puller particles @ > 0, the zero-shear viscosity is even larger than for
passive particles;

— for so-called pusher particles a < 0, the zero-shear viscosity is smaller than for passive
particles, and it can even be smaller than the plain fluid viscosity provided that the
activity of the particles is strong enough: we find 79 < 1 if o < — ﬁflgﬁfﬂ.

This prediction is consistent with well-known experimental results, see e.g. [SA09; RJP10;

Lop+15], and it has been largely confirmed in the literature [HABKO8; Hai+09; SailOa;

SailOb; GLAB11; AMES16]. In particular, for E. coli bacteria (a typical pusher particle),

we can assess the value of the parameter « using the experimental measurements performed

in [Dre+11]: this yields o < — ﬁ};@gﬂ and the experimental findings of [Gac+13] then
confirm our prediction that the effective zero-shear viscosity is smaller than the plain
fluid viscosity.

e Normal-stress differences:
In the homogeneous setting p. = wid, we obtain the following values for first and second-

normal stress coefficients, as defined in (3.6),

Vo = 9%6)\ and Vog — %6)\
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For passive particles (§ = 6), we thus obtain v19 > 0, ve9 < 0, and v19/|va| = 7, which
agrees with experiments as discussed in Section 3. The amplitude of these normal stress
coefficients is even increased in case of puller particles. In contrast, for pusher particles,
normal stress coefficients are reduced, and a very large activity could even result into
opposite effects: we find g < 0 if # < 0, and 59 > 0 if 8 < 3. This behavior was also
predicted in [SailOb; PRB16], but has yet to be experimentally verified.

e FElongational viscosity:
In the homogeneous setting p. = wid, in a uniaxial elongational flow in the direction e;,

that is, 4. = k(z1e1 — 3(z2€2 + z3€3)), we obtain the following value for the elongational
viscosity, as defined in (3.10),

ne = (3+ 15A(240)) + kger(4 +0).

This shows that passive suspensions (6 = 6) lead to a strain-thickening behavior, which
is even increased in case of puller particles. In contrast, for pusher particles, the strain-
thickening behavior is reduced, and a very large activity could even result in the opposite

effect: the system becomes strain-thinning if § < —4 (that is, o < — I‘S/IS@SH)'

4.2. Next-order description. The above result is easily pursued to higher orders in the
small-Wi expansion. For shortness, we stick here to a formal discussion. First, we show
in Appendix C that the next-order description of the suspended particle density involves
additional nontrivial transport and anisotropic diffusion terms depending on the surrounding
fluid flow: we find

(0r + e - V)pe — diV((pie +epo + e D(ﬂe))Vﬁa) = pp div(p-Au.) + O(e%), (4.2)

with explicit coefficients

_ U
Ho = Gr-1):

_ (3d+1)U2
S
._ Ug
H2 = 3qd—1)(d+2)"

In particular, this shows that homogeneous spatial densities are still stable to order O(e?),
and we shall henceforth restrict for simplicity to the homogeneous setting,

pe = Wid + O(e?).
In addition, we shall focus on the case of infinite Péclet number and of vanishing particle
swimming velocity,
Pe = o0, Uy =0,
as this choice strongly simplifies the macroscopic equations and as it seems anyhow to be
the most relevant setting physically, cf. Section 2 (recall however that our rigorous results

do not hold for Pe = 00). In this setting, we formally derive in Appendix C the following
third-order fluid equations,

Re(0; + e - V). — div(ae) + Vp: = h+ O(e?),
div(a.) = 0,

where the stress is given by

(4.3)

Ge = (14+m1) AL () + ey1 Aa(Te) + ey2 Ay (1)



HYDRODYNAMIC LIMIT OF MULTISCALE MODELS FOR SUSPENSIONS 25

+ %k1 A3 (tic) + 2k (A1 () Az (tie) + Ag(tic) A1 (tic)) + ° kg Ay (tic)tr (A1 (Ue)?)

with explicit coefficients

m = )\m(a -+ 2),
. 1
no= _>‘94d2(d+2) )
= Ay (0 + 25)
72 2d%(d+4) d+2/
. 1
K1 = )\em,
Ko = —Aemas (30 + 2L)
2 8d3(d+4) d+2/
— 1 2 2
Ry = N (24302 + 104+ 6) + 0(d + 4)(3d + 11 + 12)).

These third-order fluid coefficients coincide in the passive case (6 = 6) with those computed
by Brenner [Bre74, Eq. (7.4)] (once the notation is properly identified). Regarding the non-
Newtonian phenomena discussed in Section 3, the main observation is that this third-order
fluid model describes the expected shear-thinning behavior of the suspension. Indeed, the
shear-dependent viscosity is given in 3D as follows, cf. Section 3.1,

K 1—|—7]1+252(/£2+/£3)/12

_ 042  _24,190-12 2
=14+ 255 — " A 500 K

which is decreasing in « if and only if 8 > %. As expected, this shows that passive
suspensions (6 = 6) lead to a shear-thinning behavior, which is even increased in case of
puller particles. In contrast, for pusher particles, the shear-thinning behavior is reduced,
and a very large activity could even result in the opposite effect: the system becomes
shear-thickening if 6 < % (that is, o < —%). This possible shear-thickening effect was
indeed measured experimentally in [Gac+13; Lop+15] for suspensions of E. coli bacteria
(pusher-type microswimmers) with strong enough activity. We also refer to [Hai+09;
GLABI11; PRBI16] for analytical and numerical results showing the same effect.

We note that for Uy # 0 the corresponding fluid equation for u. would differ from the
3rd-order fluid model even at infinite Péclet number and at uniform particle density. In
particular, an additional dispersive correction —e2k4A2%, needs to be included in the fluid

equation. We skip the detail as the case |Up| < 1 seems to be the most relevant physically.

5. SMALL-Wi EXPANSION OF DOI-SAINTILLAN—SHELLEY THEORY

This section is devoted to the small-c expansion of the solution (u, f:) of the Doi-
Saintillan—Shelley model (2.5), as well as to the identification of second-order fluid equations
satisfied by the truncated expansion. We naturally split the particle density as

Jolan) = pe(a) +gelan), pei= (f) = o felim)dn € GP(TY),

where p. stands for the spatial density and where (g.) = 0. Recall the well-preparedness
condition of Assumption 4.1: we assume in particular

plico =% glio=O), € LP(TY). (5.1)
meaning that we start from an initial density that is to leading order at equilibrium with

respect to the strong rotational diffusion in (2.5). In this setting, we shall analyze the
asymptotic behavior of the solution (ue, f:) and derive a hydrodynamic approximation in
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the spirit of Hilbert’s expansion method in the Boltzmann theory [Hil12; Caf80; Gol05;
SR09|. We start from the ansatz

Ue :u0+6u1+62u2—|—...,
pe=po+epr+eipt. .., (5.2)
9e =go+eqi + g +elgs+ .,

with pg € widP(Td), with [14 pn = 0 for n > 1, and with (g,) = 0 for all n > 0. Inserting

it into the system (2.5), and identifying powers of €, we are led formally to the following
hierarchy of coupled equations:

e Order O(¢71): The equation for the particle density yields A, go = 0, and therefore, as

by definition (go) = 0, we must have
g0 =0.

On the other hand, the fluid equation yields div,(o1[po + go]) = 0, which is then
automatically satisfied as go = 0 and as pg does not depend on n.

e Order O(£"): The triplet (uq, po, g1) satisfies

( Re(dy + ug - V)ug — Aug + Vpg = h + div(o1[g1]) + div(ez2[po, Vuo)),
Apgr = Uon - Vapo + divy (7 (Vuo)npo),
(0 — %A +ug - V)po =0,

div(ug) =0, {g1) =0, >3
uoli—o = u° if Re #0, [rsuo=0 if Re =0,
polt=o = p°.
e Order O(g!): The triplet (u1, p1,go) satisfies
Re ((0; 4+ uo - V)ur + (w1 - V)ug) — Aug + Vpy
= div(o1[ga]) + div(o2lpo, Vui] + o2[p1 + g1, Vug)),
Angs = (0 — p= Az + 1o - Va)g1 + P (Uon - Va(p1 + g1))
+divy, (1, (Vur)npo + 7 (Vuo)n(pr + g1)), (5.4)
(O — p=Ag +ug - Va)p1 4+ ut - Vapo + (Upn - Vaegr) = 0, .
div(u1) =0, (g2) =0,
utli=o =0 if Re#0, [rqur =0 if Re=0,
p1lt=o0 = 0.
e Order O(g?): The triplet (uz, p2, f3) satisfies
Re ((8,5 + ug - V)ug + (ug - V)ug + (ug - V)uo) — Aus + Vpo
= div(o1[g3]) + div(o2[po, Vua] + o2p1 + g1, Vur] + o2[p2 + g2, Vug)),
Angs = (0 — 3= Az + g - Vi)g2 + u1 - Vegi + Pi-(Uon - Va(p2 + 92))
+ divy, (mt (Vug)npo + m (Vur)n(pr + g1) + mn (Vug)n(pz + g2)) (5.5)

(0 — 3= As +ug - V)pa +ur - Vapr + uz - Vapo + (Ugn - Vago) =0,
div(uz) =0, (g3) =0,

'LLQ’t:O =0 if Re 75 0, de U9 = 0 if Re = 0,

p2lt=0 = 0.
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In view of this hierarchy, we understand that the condition (5.1) for initial data needs to
be further strengthened to avoid initial boundary layers: more precisely, we need to assume
that the initial condition f.|;=¢p = f¢ is compatible with the above hierarchy, meaning that
g- coincides initially with g 4+ €292 + €3g3 up to higher order errors. To accuracy O(e?),
this well-preparedness is precisely the content of Assumption 4.1.

The well-posedness and the propagation of regularity for the above hierarchy are stated
in the following result. We emphasize that we were not able to find references for the types
of systems that naturally appear in this e-expansion, and we believe that some of these new
well-posedness results may be of independent interest (see for instance the system (5.18)
below). Note that the hierarchy is triangular as we can eliminate the densities g1, g2, g3
in terms of the velocity fields ug, w1, u2 and of the spatial densities pg, p1, p2. We focus on
the Stokes case Re = 0, while the 2D Navier—Stokes case follows up to straightforward
adaptations and is omitted for shortness. The proof is displayed in Section 5.2.

Proposition 5.1 (Well-posedness of hierarchy). Consider the Stokes case Re =0, d < 3.
(i) Well-posedness for (ug, po, g1):
Given integer s > % +1, p° € H5(TY) N widP(Td), and h € L2 (RY; HS~1(T9)?), there
exists a unique solution (uo, po, g1) of the Cauchy problem (5.3) with
ug € L]O(SC(R+; HS+1(Td)d),
po € Lis. (RTSH*(TY) N g P(T) N L (RT3 H*TH(TY)),
g1 € Lin(RY;HHT? x s71)),
and g1 is given by the explicit formula
g1(-,n) = = Uon - Vpo + 2(n®@n) : po D(up). (5.6)

Moreover, for all v >0, provided that h € W2 (R*; HS~Y(T%)9) and that s is chosen
large enough, we also have

dug, Oug € L (RT; H™(TH9),
dipo, 2po € L (RT; H'(T?).

(i) Well-posedness for (u1, p1, g2):
Given s > 0, provided that the solution (ug, po) of item (i) is such that

up € L (RT; HP3 (T n WL (R HoTH(TH)Y),

loc loc
po € LS (RT; HFA(TY) N WS (RF; HY(T?)),

there ezists a unique solution (ui, p1,g2) of the Cauchy problem (5.4) with
up € L%C(R—O—;Hs—i-l(jrd)d)’
pr € Lin(RT H(T) NLE (R HH(TY),

g2 € L(RT; HS(TY x s471Y),

and go is given by the explicit formula
g2(,n) = —745Um-Vpr — s(n@n—11d) : <%A’2(u0,p0) — poD(ug)?

—dpoD(ur) — dp1 D(ug) — ﬁU@V%)
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_ﬁUo(Vpo) : (n((n ®n): D(uo)) + ﬁ D(uo)n>
—mUopo div,, (n((n ®mn): D(uo)) + ﬁD(uo)n>
+heo(((n©n) : D(w))” — gy tr(D(wo)?)). (57)

in terms of the (non-standard) Rivlin—Ericksen tensor AL defined in (3.25). Moreover,
for all v > 0, provided that s is chosen large enough, we also have

€ Ln(RY;H'(TY,
dpr € LSBT HT(TY).

(i1i) Well-posedness for (uz, p2, g3):
Given s > 0, provided that the solutions (ug, po) and (u1,p1) of items (i) and (i) are

such that
(uo,po) € W (RT; HT (T4,
(u1,p1) € Wil(RT; H™(TH™Y),

for some r large enough, then there exists a unique solution (usz, p2, gs) of the Cauchy
problem (5.5) with

uy € Li)OOC(R+;HS+1(Td)d),
pr € L (RYH(T)) ML (R HTH(TY),
g3 € LipcRTH TN T x§771).

Associated to all the above well-posedness results are estimates of the corresponding norms
of the solutions in terms of all the parameters and of the controlled norms of the data.

With the above construction of the hierarchy {un, pn, gn+1}n>0, Wwe can now turn to the
justification of the formal expansion (5.2). We stick to order O(&%) for conciseness, but the
proof could be pursued to arbitrary order. The proof is displayed in Section 5.3. Note that
the well-preparedness assumption (5.8) below for initial data is one order stronger than in
Assumption 4.1: indeed, while our main result in Section 4 focusses on O(e) effects, only
deriving second-order fluid models, the present result further describes O(e?) effects and
therefore requires this strengthened well-preparedness condition. Although not needed for
the purposes of our main result, the present next-order analysis is included to illustrate
how the e-expansion can be pursued to arbitrary order without additional mathematical
difficulties, then leading to higher-order fluid models; we refer to Appendix C for the
corresponding derivation of third-order fluid models.

Proposition 5.2 (Error estimates for e-expansion). Let h € C®°(R* x T let p° €
H*(T% N widP(Td) for some s > 1, and let also u® € H*(T)? with div(u®) = 0 in the
Navier—Stokes case. Denote by (ue, fz) the solution of the Doi-Saintillan—Shelley model (2.5)
as given by Proposition 2.1, and assume that the initial condition fz|i—o = f2 is well-prepared
in the following sense: decomposing fS = p2 + g2 with p2 := (f2), we have in terms of the
functions ug, u1,u2, g1, g2, g3 defined in Proposition 5.1 with data (h,u°, p°),

o

O l (o]
pe = p and  €3||g2 — (eg1 + %92 + €°g3)le=oll2, < Coe’, (5.8)
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for some constant Cy < co. Further assume that
AO(1 + Pe)[p°|lee <1

1s smaller than some universal constant.

(i) Stokes case Re =0, d < 3:
For all t > 0, we have

1
e2||V(ue — ug — euy — EQUQ)HL?O 2 +[IV(ue —up — euy — EZUQ)HL% 2 < C(t)e?,
1
e2lge — g1 — %2 — g3l 12, + IVilge — €91 — €292 — €2g3) 212, < C(1)e",
lpe = po —ep1 = €%p2llee 12 + [ V(pe — po — ep1 — €2pa) 212 < C(t)e?,

provided that eC(t) < 1 is small enough, where the multiplicative constant C(t) depends
on Pe and on an upper bound on

tv CO7 )\7 U07 ”(VUO,VULV’U,Q)HL?OL?CO, H(pOaP17P2)HL§°L;°7
1091, 92, 93) lp e yrroer 108 — Aa)gallpper2 -

(i1) Navier—Stokes case Re = 0, d = 2:
For allt > 0, we have

lue = uo — eur — ®us|lpoe 2 + [ V(ue —uo — eur — 2up)llp212 < C)E°,

1
e2llge —egr — %92 — gsllrge 1z + IVinlge — g1 — %92 — 2g3)llrz12, < Ct)eY,
lpe = po —p1 = €%p2llee 12 + [ V(pe — po — ep1 — €2pa) 212 < C(t)e?,

provided that eC(t) < 1 is small enough, where C(t) now depends Pe and on an upper
bound on

t, Co, A, Up, H<u07ulau2)”L?oW;v°°7 ”(PO:PlaP2)HLf"L§°a
“(91792793)||L§0 whoe (0 — Aw)QSHLt‘” L2, 0

Finally, it remains to identify the equation satisfied by the truncated e-expansion
(Ue, pe) == (up + eu1, po + €p1): we show that this expansion precisely coincides with the
hierarchical solution of the second-order fluid model (3.26) with some explicit choice of
parameters. The proof is displayed in Section 5.4.

Proposition 5.3 (From hierarchy to second-order fluids). Given the solutions (uo, po, g1)
and (u1, p1,g2) of the hierarchy (5.3)—(5.4), as constructed in Proposition 5.1 in the Stokes
case, the superposition (Ue, pe) := (uo + eu1, po + €p1) coincides with the unique hierarchi-
cal solution of the second-order fluid model (3.26) in the sense of Proposition 5.2, with
coefficients 1o, n, o, ¥1, V2 explicitly given by (4.1). O

The combination of Propositions 5.2 and 5.3 completes the proof of Theorem 4.2. Note
however that we only appeal to Assumption 4.1 in the statement of Theorem 4.2, which is
one order weaker than the well-preparedness assumption (5.8) required in Proposition 5.2.
Indeed, as explained, we focus in Theorem 4.2 on O(¢) effects, only deriving the second-order
fluid model, while in Proposition 5.2 we took care to further describe O(g?) effects. For the
purposes of Theorem 4.2, the well-preparedness assumption (5.8) can therefore simply be
replaced by Assumption 4.1.
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5.1. Computational tools for spherical calculus. In this section, we briefly recall
several computational tools that will be used throughout this work to compute derivatives
and integrals on the sphere. First, we recall that the Laplace—Beltrami operator A,, on the
sphere S*! (d > 2) can be computed as follows: given a smooth function g : S¥~1 — R, we
can extend it to R?\ {0} by setting G(z) := g(é—l), and we then have

Ang = (AzG)|gi-1. (5.9)
In particular, we can compute in this way
) = (1-dn; (5.10)
An(nm]) = 2(51']' — 2dnmj,
) = 2(5Z~jnk + 5ikn]~ + 5]knl) — 3(d + 1)ninjnk,
)

= 2(8i5npny + Sgining + Opingng + dynjng + Oyning + dming)
—4(d + 2)nmjnknl,

Ay (ninjngmy

and so on for higher-order polynomials. These formulas can be used to explicitly invert A,
Rdxd

on mean-zero polynomial expressions: for any trace-free symmetric matrix A € , We
find for instance,
AN n) = —74n, (5.11)
Al(nen:A) = —LHnen: A, (5.12)
A ( nen: A)) - _m( (n@n:A)+ 4 An) (5.13)
A, (( ®n:A)? - d+2 trAz)) = —ﬁ((n@n:Aﬁ%—%n@n:%ﬁ
24+ 2 tr(A2)>. (5.14)

Henceforth, the pseudo-inverse A ! is chosen to be defined as an operator from mean-zero
fields to mean-zero fields.

We also recall that the divergence of functions on S*~! can be computed similarly as the
Laplace—Beltrami operator (5.9) by an extension procedure: for any trace-free matrix A
and any smooth function ¢ : S~ ! — R, we find for instance

div,, (7- Ang) = Vag- An —d(n®n) : Ag. (5.15)
Finally, we further note that the above differential formulas (5.10) imply by direct

integration the following elementary integral identities for polynomial expressions on the
sphere,

Sd-1
/Sal_1 ninjngn dn = m (5ij5kl + 5kj5il + 5ki5jl)7

/S\d—l ningnENNmny dn = m (8ij0k1Omp + - - ),
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and so on, where we recall the notation wy = [S?"!|. These identities imply in particular,
for any trace-free symmetric matrices 4, B € R%*¢,

/ (n@n—1ild)dn = 0,
sd—1

. _ 2w,
/Sd—l (nen—L1Id)(n@n:A)dn = T4

. _ 8w
/Sdl (nen—31Id)(n@n:A)?*dn = d(d+27)fldﬂ)(‘42 — Ltr(A%)1d).

5.2. Proof of Proposition 5.1. We focus on items (i) and (ii), while the argument for
item (iii) easily follows by adapting that for item (ii). We split the proof into three main
steps.

Step 1. Explicit formulas for g1, ga.

With the above identities (5.11)—(5.14), we can explicitly solve the successive equations for g;
and g2 in (5.3)—(5.4). Note that these equations can be solved for fixed (z,t), thus treating
p0s p1, D(up), D(u1) and their derivatives as parameters. We start with the computation
of g1. Using (5.15), the defining equation for g; in (5.3) can be rewritten as

Angr = Upn-Vpg —d(n®@n) : poD(uo).

Hence, using (5.11) and (5.12), the explicit form (5.6) for g; follows.
We turn to the computation of go. Using (5.15), inserting the explicit form (5.6) for g1,

and noting in particular that V, g1 = —%WﬁVpo + po m- D(ug)n, the defining equation
for go in (5.4) can be rewritten as
Angs = (O — pgla+uo- Va)g1 + Pi(Uon - Valpr + g1))

—d(n®n):pgD(ur) —d(n®@n): (p1+ g1) D(ug) + Vngr - (Vug)n
= (0 — psBe+uo- Vo) (— z257Uon - Vpo + 5(n@n) : poD(uo))
+Uon - (Vm — 727(Vuo) Vo) + po(n@n) : ( (uo)(Vuo))
—(n®@n—L1d): (dpoD(u1) + dp1 D(ug) + U5V po)
+4H 2 Us(n - VPO)((” ®n): D(ug)) + 5Uopon - Vo ((n®@n) : D(ug))
2
—%pg ((n ®mn): D(uO)) .
Recalling the following definition of Rivlin—Ericksen tensor,
Ah(ug, po) = (0 — fDs + o - Vi) (2p0D(uo)) + (V)™ (200D (o)) + (2p0D(uo)) (Vuo),
and noting that tr(A%(uo, po)) = 4po tr(D(ug)?), we can reformulate the above as

Angs = —2=Uon- ((616 — pA+ug - V)Vpy + (VUO)TVPO) +Uon - Vpy
+n@n—gld): (iAlz(uoa po) — dpo D(u1) — dpr D(uo) — ﬁUgV%o)
d“ LUo(n - Vpo)((n®n) : D(ug)) + 2Uopon - Vu((n @ n) : D(ug))
2
d+2p0((( @n) : D(w))’ — gy tr(D(wo)?)).
The equation in (5.3) for py entails that the first right-hand side term vanishes as
(0 — B=A+ug - V)Vpo + (Vuo) Voo = V(0 — A +ug - V)py = 0. (5.17)
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Now appealing to (5.12), the second term reads
(n®n—11d): (%A’z(uo, po) — dpo D(u1) — dp1 D(up) — ﬁU3V2po)

= —ﬁAn <(n ®mn): (iA’Q(uo,pg) —dpoD(u1) — dp1 D(up) — ﬁUgV2po) Id).
Using (5.13), we further get for the third term,
%Uo(n . Vpo)((n ®mn): D(uo))

=l ((Fpn) - (0 m) D) + 74 Dl ),

and for the fourth term,
$Uopon - Va((n®n) : D(up)) = —%An <p0 div, (n((n ®mn): D(uo))>.

Finally, using (5.14) for the last term, the explicit form (5.7) for go follows.

Step 2. Proof of item (i).
In view of the explicit solution for the equation for g; obtained in Step 1, cf. (5.6), the
elastic stress o1[g1] defined in (2.5) takes the form

nlg = 16 [ (10w Dlan)n@ mpodn = 36 rlpo. Vuol,
o

where we have used that integrals of monomials of odd degree on S¢~! vanish. By (5.16),
this actually means

Wq

o1lg1] = mw D(ug)po = %9 o2[po, Vug].
The system (5.3) then becomes in the Stokes case Re = 0,
—div((1 + copo)2D(uo)) + Vpo = h,
(0 — p=A+ug-V)po =0,
div(ug) =0, [rauo =0,
poli=0 = p°,

wd(9+2)
2d(d+2)
for this natural system. We establish the well-posedness and the propagation of regularity
for this system, which we believe to be of independent interest, and we split the proof into
five further substeps. Note that the propagation of regularity requires some care: we need

to treat low and high regularity separately in several steps.

(5.18)

where we have set for shortness ¢g := A Surprisingly, we could not find a reference

Substep 2.1. Well-posedness of energy solutions for (5.18).
On the one hand, using the incompressibility constraint, the energy identity for the
transport-diffusion equation for py reads

loolo 12 + 2190002 2 = 16122 za (5.19)
On the other hand, for py > 0, the energy identity for ug takes the form

IVeoliscea < 2 [0+ o)D) = [ huo
Td '[[*d
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and thus, using de ug = 0,
[Vuollpee 1z < (17l g-1(ra)- (5.20)

By a standard fixed-point approach, in view of these a priori estimates, given an ini-
tial condition p° € L*(T?) with p° > 0 and given h € L (R*; H1(T9)?), we easily

check that the system (5.18) is globally well-posed with uy € L®°(R*; H(T%)4) and
po € L®(R*; L2(T?)) N L3(R*; H(T4)?%) with pg > 0; we skip the detail.
Substep 2.2. H' regularity for (Vug,po): provided that the initial condition further
satisfies p° € H'(T?), and provided that h € L (RT;L%*(T%)?), we show that py €
Lo (RY; HY(TY)) N LE (RT; H2(T9)) and that ug € L, .(R*; H2(T?)?), with

IV ol 2 + 19200 ll212 < Clt, by ). (5.21)

{ [Augllzr2 S C(t,h,p°) : ifd=2,

[Auglli2 S Ct,h,p°) + ifd=3, (5.22)

where henceforth C(t, h, p°) stands for a constant further depending on an upper bound
on t, cg, and on the controlled norms of the data A and p°.

We start with the proof of (5.21). Testing the equation for pg with App, and using the
incompressibility of ug, we find

SVl + ity = [ - Vaam

= — Vug : (Vpo ® Vo)
Td

IVuolly2 [V poll7a -

IN

In dimension d < 4, we can appeal to the Gagliardo—Nirenberg interpolation inequality
1—4 d
IVo0lls < 1¥p0ll3s *19%0001%,.
The above then becomes, further using the elliptic estimate ||V2,00Hi2 < HAPOHizv

2(1—-49) d
35tlVoollfz + pellApollfz < IVuollrz[[Veoll 1 Apollfz,

where the last factor can now be absorbed in the left-hand side by Young’s inequality, to
the effect of

d 2 1 2 i 2

a”vpoHLg + ﬁHAPO”Lg S ||Vu0||L§ ||VP0||L§C-

By Gronwall’s inequality and the a priori energy estimate (5.20), this precisely proves the
claim (5.21).

Next, we turn to the proof of the corresponding estimate (5.22) for ug. Testing the
equation for ug with Aug, we find

Buol, = = [ b Buo =20 [ div(pn Do) - Buo
x Td Td

= —/ h - Aug — co/ po\Auol2 — 260/ (D(uo)Vpo) - Aug,
Td Td Td
and thus, by Young’s inequality,
[Auollpz S [1AllLz + colD(uo) Vpollpz-
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In dimension d < 4, appealing to the Gagliardo—Nirenberg interpolation inequality, we can
estimate for all 2 < p, ¢ < co with % + % = % and d < p,q < d%dy

ID(uo)Vpolz < [Vuollz Vool

1—4 d
Spg [ Vuoll quzuoH 2HVP0HLgPHVQPOH£§

Inserting the a priori estimates (5.20) and (5.21), combining with the above, and using
Young’s inequality to absorb the H? norm of ug, we are led to

.Q
[

[Auollrz Spq [1Pllez + C @ B)IVA°Il] g

da=
2

dg=2
HHVQPOHE -

Choosing any ¢ < oo if d = 2, and choosing ¢ = 75 if d = 3, we get

[Auollrz Sy [[BllLz + C( R)VE7] 2HV2po| (5.23)

L2 9
where we can take any exponent v > 0 if d = 2, and v = 0 if d = 3. Combined with (5.21),
this yields the claim (5.22).

Substep 2.3. H? regularity for (Vug,po): provided that the initial condition further
satisfies p° € H?(T%), and provided that h € L2 (R*; HY(T9)?), we show that py €

loc

L (RT; H2(T9))NLE (RY; H3(T?)) and that ug € LS, (RY; H2(T))NLL (RT; H3(T4)9),
with
IV2pollze 12 + 1V poll2 12 + IV 2ol pee 2(pay < C(t,h, 0%, (5.24)

IV3ug|2, o < C(t,h,p°) : ifd=3. (5.25)
t

[Vupl2. 2 < Clt.hp?) = ifd=2,
L3

We start with the proof of (5.24). Applying V2 to both sides of the equation for pg, testing
with V?pg, and integrating by parts, we find

SV mlE + 19l = = [ (V) V (w0l Pipn)

= /d(vsﬂﬂ)ijk(vuo)ki(vpo)j +/d(Vgpo)ijj(vuo)ki(vpo)k,
T T
and thus, using Young’s inequality to absorb the factors V3pg in the right-hand side,
OlIV2pollfz + IVpollf2 S IVuoVpollfa-

By the GagliardofNirenberg interpolation inequality, we can estimate for all 2 < p, ¢ < o0
With%—ké 7andd<p,q< 5 2,

A

IVuoVpollp.2 IVuollrzlIVpollng

1—4 d
||VU0|| q||V2U0|| z||VP0||sz||VQPOHEQ
x x

IN

Inserting the a priori estimates (5.20), (5.21), and (5.23), and combining with the above,

we are led to
4d

(1-5) R Cary
LIV 0l + IV 0l2 < Cemvels ? (1920l + 1920l ™00).
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Choosing any g < oo if d = 2, and choosing ¢ = d%dQ if d = 3, this proves

V20022 + 1 cif d =2,
1d w2, |2 3912 o L

s=||V + |V < C(t,h, X @ .

iV ol Vol = €O R) { IIVzpollingIIVonHii - ifd=3.

By Gronwall’s inequality, this yields

”VZPOH%;;O L2 + HVSPOHig L2
< CEMIVPlz %4 exp (. WIV2p0ll2s2) ¢ ifd=3.

By the a priori estimate (5.21), this proves the claimed estimate on py. Combined with (5.23),
this concludes the proof of (5.24).

We turn to the proof of (5.25). Applying V2 to both sides of the equation for wug, testing
with V2ug, integrating by parts, and using Young’s inequality, we find

IVuollz < VA2 + Voo @ Vuollz + [V2p0 @ Vuollpz,

and thus, using as above the Gagliardo—Nirenberg interpolation inequality and the a priori
estimates (5.20), (5.21), and (5.24), we obtain

IV3uli22 S C(th.p°) (1+ V2 poll52). (5.26)
Combined with (5.24), this proves (5.25).

Substep 2.4. H?® regularity for (Vug, pp): for all integers s > 2, provided that the initial
condition further satisfies p° € H*(T¢), and provided that h € LS (R*; H5~1(T9)?), we

loc
show that py € L2 (RT; H*(T?)) N L (RT; H*+1(T9)) and that ug € L, (RT; H5TL(T4)9).
More precisely, we shall prove for all integers s > 2,
lpollLge s + oolliz s+ Ss 0%l mz exp (Cslluollny ) (5.27)
[uollpee et s 1llpee prs—1 + lluollize mgllpollese a. (5.28)

and we note that these estimates indeed yield the conclusion by a direct iteration, starting
from the results of Substep 2.3 for s = 3.
Let s > 2 be a fixed integer, which entails in particular s > g + 1 as we consider

dimension d < 4. We start with the proof of (5.27). Applying (V)* := (1 — A,)*/? to both
sides of the equation for pg, and testing it with (V)*pg, we find

SNl + IVl == [ (9 )9 (- Vo)

and thus, using the incompressibility constraint,

SOl + EIVT i = = [ (@m0 T
1Y pollgz V)", wo - Tlpollz- — (5.29)

To estimate the last factor, we appeal to the following form of the Kato—Ponce commutator
estimate [KP88, Lemma X1| (see also [MBO1, Lemma 3.4]): for all u € C°°(T%)¢ and
p € C=(T9), we have

IN

V)% w-Viplle s lullagllpllyzee + lullyzee ol
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and thus, by the Sobolev embedding with s > g +1,
(V)% u-Vipllz Ss llullag llpll - (5.30)
Using this to estimate the last factor in (5.29), we are led to

salleollis + 1VpollEy Ss llpollzzs ol (5.31)
and the claim (5.27) follows by Gronwall’s inequality.

We turn to the proof of (5.28). Applying (V)® to both sides of the equation for ug, and
testing it with (V)*ug, we find

IVl = [ V)% (9)u0—2e0 [ (V)" Dlun) : () (o0 Dlu)

Td Td
< [0 =2 [ (9) Do) : (V)% o] Do)
and thus, by Young’s inequality,

lwoll g1 S Al -1 + I1(V)*, pol D(uo)ll2-

To estimate the last factor, we now appeal to the following form of the Kato—Ponce
commutator estimate, instead of (5.30), with s > g +1,

V)% P D)l Ss llullmg ol ag-
Using this to estimate the last factor in the above, the claim (5.28) follows.

Substep 2.5. Time regularity.
For all s > 0, if pg € L2 (R*; H*+2(T4)) and ug € L (R*; H5+3(T4)?), then the equation

loc

for pg yields, by the Sobolev embedding in dimension d < 4,
Oipo = p=Apo —ug - Vpo € L% (RY; H*(TY).
Next, taking the time-derivative of both sides of the equation for ug, we find
—diV((l + Copo)QD(atU())) + Voo = CodiV((atpo)QD(uO)) + Oih.

For all s > 0, if py € LS (RY; H*+2(T9)) and up € LS (RT; H¥F3(T9)9), we deduce by
elliptic regularity that dyup € L2 (RT; HT1(T9)?) provided h € W'li)fo(R"'r;Hs_l(Td)d).
Higher time regularity is obtained similarly by direct induction.
Step 3. Proof of item (ii).
In the Stokes case Re = 0, the system (5.4) reads

—Auy + Vpy = div(oi[ge]) + diV(Gz[po, Vui] + o2lp1 + 91, Vuo]),

(0 — g=Ag + uo - Va)p1 + ur - Vapo + (Uon - Vagi) =0,

div(ul) = 0, de uy = 0,

P1 ’t:O =0,

(5.32)

where g1, g2 are given by (5.6) and (5.7), respectively, in view of the explicit computations
in Step 1. Note that the form of g1, go ensures that this is a linear system for (u1,p1). We
therefore focus on the proof of a priori energy estimates, while well-posedness and regularity
properties easily follow. On the one hand, testing the equation for p; with p; itself, and
using the incompressibility constraint, we find

sailleliz + 5l Vol = —/polul'vpo—/

» </Sd—1 pmUon - Vzg1(-,n) dn)



HYDRODYNAMIC LIMIT OF MULTISCALE MODELS FOR SUSPENSIONS 37

< Norllz (Nl 9p0llze + (00l 9201ll2).
and thus, by the explicit formula (5.6) for g; and by the Sobolev embedding,
2
salerlfz + ellVorlfe < llorllz (1 + lluallpz) (1 + loollmg + lluollmz)™ (5.33)

On the other hand, testing the equation for u; with u; itself, we find

/ ]Vu1|2 = —/ Vuy : o1[g2] —/ Vuy : o2[po, Vui] —/ Vuy : o2[p1 + g1, Vug),
Td Td Td Td

and thus, recalling the definition of the elastic and viscous stresses, inserting the explicit
formulas (5.6) and (5.7) for g1, g2, collecting all quadratic terms in Vu; in the left-hand
side, and noting that integrals of monomials of odd degree on S?! vanish and using again
the incompressibility constraint,

/ Vg > + A(1+ ;9)/ (/ (n®@n: Vup)? dn)po
Td Td Sd—1
_ 1 . _1
= 55\ Td(/gd_l(n@@n.Vul)(n@n dId)dn)
: (%AIQ(UO,PO) — po D(uo)? — dp1 D(ug) — ﬁU(?VQPO)

— é)ﬁ/ (/ (n®mn:Vu)(n®@n : Vug)? dn>p0 - / Vuy : o3]p1 + g1, Vug).
Td Sd-1 Td

Noting that the second left-hand side term is nonnegative as py > 0, we deduce by the
Sobolev embedding,

2
IVurllie < lleallee luoll ez + 18pollz luoll g + llpoll 2 llOcuoll s + ool (1 + lluol s )™

Combining this with (5.33) and with the Poincaré and Gronwall inequalities, we deduce
that w; is controlled in L (R*; H'(T4)%) and that p; is controlled in L (R*; L2(T4)) N

loc loc
L2 .(R*; H(T%)) provided that ug € LS, (R*; H3(TH%) 0 WL (RT; HY(T4)4) and py €
Lise(R*; HX(T4) 0 Wy (R L2 (T7)), O

5.3. Proof of Proposition 5.2. We aim to estimate the remainder terms u ¢, fi.c, Pk.c, Gr.e
in the e-expansion of the solution (u., f;), as defined through

k—1
Ue = Zejujjtskuk@ (5.34)
j=0
k—1
Pe = Zsjpj—l—skpkﬁ’
j=0
k—1
ge = fe—pe = Zgjgj"i‘gkgk,a
j=1
Jke = Pret Gre,

for any integer k > 1. We split the proof into five steps. We shall constantly use the
short-hand notation C = C(t) for multiplicative constants as defined in the statement, the
value of which may change from line to line.
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Step 1. Energy estimate on the remainder ug .

Comparing equations for u., ug, u1, cf. (2.5) and Proposition 5.1, using the linearity of o
and the bilinearity of o2, the remainder term u3, = e 3(ue — ug — euy — €2up) as defined
in (5.34) satisfies the linearized Navier—Stokes equation

Re(0¢ + ue - V)us . — Auz e — div(oz[fs, Vuse]) + Vps
= —Re [(ugz - V)(uo + cur + e2us) + (uz - V)ur + ((u1 + euz) - V)us]
+div(oy[gac]) + div(oa[fse, V(uo + sur + %ug)])
+ div(oa[p2 + g2, Vui]) + div(oa[p1 + g1 + e(p2 + 92), Vua]).

Here, we have also used the fact that o1[7] = 0 for any function 7 depending only on z,
which follows from the simple observation that [4_,(n ®n — éld) dn = 0. Testing this
equation with us ., using the incompressibility constraints, and inserting the definition of
elastic and viscous stresses o1, 09, cf. (2.5), we get the following energy identity,

Re%%Hug,aHi2 + HVUS,aHiz + )\// (n@n: Vughg)QfE
= x Td xSd—1
= - Re/ uge ®uge : V(ug +eur + €2U2)

Td

— Re/d uge - ((u2 - V)ur + ((u1 + eug) - V)ug)
T

0 [ Vg ( / (n@n - 41d) g1 dn)
Td gd—1

A Vs ([ @ n) (Vo + e + <)) (n ) foc o)
Td Sd—1

- - Vus, : (/Sd_l(n ®@n)(Vui)(n®@n)(p2 + g2) dn)

—A - Vuse : (/Sd_l(n ®@n)(Vuz)(n®@n)(p1 + g1 + (p2 + g2)) dn),

where we note that the viscous stress oa[f:, Vus.] has led to an additional dissipation
term in the left-hand side. Appealing to the Cauchy—Schwarz inequality and to Young’s
inequality, we may then deduce

Re gilluzellfz + 1 Vuself
~ € ug, VUi, Vu2)||L® U3elly,2 U, U2)||y2 G4.ell1,2
S Re(1+1(Vuo, Vur, Vua) ) ((lusellZs + 11, ug) |22 ) + A2620 g2

+ N (|(Vug, Vur, Vug) oo | (f3.6, 915 92, p1, pQ)Hii .

Recalling the short-hand notation C for multiplicative constants, and further decomposing
f3,5 = P31 93+ Egae, We get

Re gillus.ellfz + | Vus.e|f

< C+C(Refunclfs + lpaclfs ) + (V67 +C)laacl?y . (5:35)
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Step 2. Energy estimate for p3 ..
The equation satisfied by p3 . = 5*3(,06 — po —EP1 — €2p2) takes the form

atp&s - ﬁAmp&e = —Ug- V,U?,,s — U3 * V(po +ep1 + €2p2)
—ug - Vp1 — (w1 +eug) - Vpz + (Uon - Vagse).
Testing it with p3 . itself, we can use the incompressibility constraint and several integrations

by parts to get

Biblloncli + pelVrnclis

S (H(p07510175292>HL§°HU3,€HL§ +1(o1s p2)lluge [[(ur, ua) 2 + (193, Li}n)HvPi’),é 12

hence, after absorption in the spatial dissipation,
%Ilpg,sllii + i”vp?),aﬂig < (Pe HPOH%;O + 526)”“&5”%3 +C(1+ ”93,s||ign)'
Using the maximum principle

lpollres, < [1p°%lLee, (5.36)
which holds for a (regular) solution pg of (5.3) with initial data p°, we deduce

SloscllPs + &1 9pselZ2 S (PellolBs +<20) fusclZ2 +C(1+ llgacl: ). (5:37)

Step 3. Energy estimate for gy ..
The equation satisfied by g4 = e 4(g- — g1 — €292 — £3g3) takes the form

7
58tg4,5 - Angél,a - pieAxg4,5 = Z T, (538)
=1
in terms of
T = —(0 — PieAx)gg — div, (ung +uz(g1 + 592))7
Ty = —diVm(ueg&s)a
T3 = edivg(use(g1 +€92)),
Ty = diva;Pf‘ (UOnfS,&‘)v
Ts = div, (Wﬁ(VUE)nfg,g),
Ts = div, (ﬂ#(Vugﬁ)n(po +efi + 52f2)),
Ty = diva(m, (Vur)nfo + m (Vua)n(fi + € f2)).

Testing this equation with g4 . itself, we separately analyze the effect of the seven different
source terms. For T}, T, and Ty, we integrate by parts, we use Poincaré’s inequality on S¢~1,
recalling (gs.) = 0, and we use the maximum principle (5.36), to the effect of

// Tigse S CllVagaelr: ,
Td x §d—1 o

// Tsgae S (10°lleee +C) IVuselliz I Vngaellpz
Td x§d-1 v o

// Trgre S CllVngaelie -
Td x§d—1 o
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For the term T3, we use the incompressibility constraint, we further decompose g3 . =
93 + €94, and we integrate by parts, to the effect of

// T2g4,€ = - // 94, div(usgi’),e)
TdxSd—1 TdxSd—1
= // g4,cUe - Vg3 +¢€ // g4l - Vmg4’6
TdxSd—1 Td xSd—1
= // 94,eUc - V93,
TdxSd-1

which is then estimated by

// Togae < Clluclizl|Vngacllz
TdxSd—1 ‘ o

again using Poincaré’s inequality. For the term T3, we get

// T3g4: = 8// gacus e - V(g1 +€g2)
TdxSd—1 TdxSd—1

< eClluzelli2Vangaelliz -

For the term T}y, decomposing f3. = p3. + g3 + €94, using that Uy is a constant and
that Pf-g4,€ = g4, and integrating by parts, we find

// Tygse = // gadiv, Pi-(Ugn f)
Tdx§d—1 TdxSd—1
= // g4,sdivm (UOn(pB,e + 93)) +ely // g4,gdivm (ng4,5)
TdxSd—1

Td xSd—1
= // 9a.dive (Uon(pse + g3)).
Td xSd—1

which is then estimated by

// Tygsdudn S (IVpseliz +C) [ Vagaclle -
TdXSd71 ’

Finally, decomposing f3. = p3. + g3 + €94 and us = ug + €uy ¢, and integrating by parts,
we split the remaining term 75 as follows,

// T5g4,8
Td xSd—1

= // g4,sdivn (ﬂ'# (vus)nf?;,s)
TdxSd—1
= // gaedivy, (Wfi(vus)n(l)&s + g3 + 594,6))
Td x§d—1
— // p3.c94.divy, (w#(Vug)n) + // g1divy, (w#(Vue)ngg)
TdxSd—1 Td x Sd—1
45 [, Pt (Vun)
Td xSd—1
= // p3,294,-divy, (T (Vug)n) + e // p3.294,-divy, (T (Vg )n)
TdxSd—1 TdxSd—1
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4 // gaediva (T (Vue)ngs) + § // sl 2diva (it (Vo))
TdxSd—1 Td xSd—1

2 .
+5 // |g4,g\2dlvn(7r,JL‘(Vu178)n),
Td xSd—1

which is then estimated by

// Tsgse S Cllgaclfs +C(IIVuelliz + llpsellie) IVagaelle
TdxSd-1 ©n ’

el Vurelz (lgaelZs 2 + losels llga.s

L4 Li) :
Testing the equation (5.38) with g4 . itself and using the above estimates on the different
source terms, together with Young’s inequality, we end up with

?J? + ||vng4,a
z,n

eilloae Lo+ 5l Vagaeliz
S C(L+ lluclifn + llpsellfz) + 1Voslfz + (1% Iz +€%C) llusell

fapz) +eCllgacllfz - (5.39)

+ellVurellez (Iosellfa + llgae

In order to estimate the Li norms in the right-hand side, we appeal to interpolation and to
the Sobolev inequality on the torus in the following form: in dimension d < 3, we have for
any 6 > 0,

[V |

2(1—9) d
ol < ClVurelizlgaels . VlgaelZy

2 . prr 2
< I Vagnely + CE TV a2

+ClVurellpzllgaclis -

Likewise, further noting that ps . is mean-free (given that the defining equations for po, p1, p2
ensure [rq p1 = Jrap2 =0 and [ pe = [1a po = 1), we have for all 5 > 0,

2(1—2) 4
IVurelizlloselis < ClVurclizlloselllz *IIVosel?s

< IVpsellPs + O | Vur 257 s oI
< IVpaelZa + O 5 [Vur e |57 s 2.

Inserting these bounds into (5.39), and choosing § ~ Pe™! and n ~ 1, we get for ¢ < 1

i% N + ||Vng4,5’|i§ N

S C(1 A+ Jluellz + llo3.el

5%”94,5

ig) + ||V03,s||i§ + (I0°IEe + 526)”“3,5”%{;

4
ig + 5C(1 + HVuLaHﬁEd) ||g475\|ii . (5.40)

4
+elVur el 21 ps.e
xT

Step 4. Conclusion.
Combining estimates (5.37) and (5.40) in such a way that the term ||V,03,5Hi2 in the

right-hand side of (5.40) can be absorbed into the left-hand side of (5.37), we obtain

Pe §illoscliz +edlloaclis  +Vosellfz +1Vngaclis |

S C1+ fluclizpy + llpsellfz) + ((1+Pe)?[p°lIEee + ) llusellzy +C(1+ llgsel?: )
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4 4
+ eV e s l22 + 2C(1+ [ Ven el 57 lgnellZ2 -
Further using the fact that
lucllin S C+ellluselin,  Ngsellfz I S CH+e?llgacliz
x x x,m z,m

the above reduces to

Pedlipscl?: +edlloncl?s +IVosel?s + 1 Vngacl?s

S C(L+lIpselfz) + (L +Pe)polfee +e7C)lusell

_4
+ 5C<1 + HVULEHEgd) (Ing,Ellig +lgaclfz n) (5.41)

We now aim to combine this with (5.35) to conclude the proof, and we separately consider
the Stokes and Navier—Stokes cases, splitting the proof into two further substeps.

Substep 4.1. Stokes case Re =0, d < 3.
In the Stokes case, the estimate (5.35) becomes, using Poincaré’s inequality,

ii ) (5.42)

lus el S C+X0%|gaellfz +C(llps.e
S CHNPVagaeliz +C(loselfz +€lloacllfz )-

ig +&||gae

We now insert this estimate for ug . in the right-hand side of (5.41). Provided that
0% (14 Pe)*([|p°(f +%C) < 1

is small enough, we can absorb the term involving ang47€||ig in the estimate for us .,
z,n

and we end up with
Pe %HPB,EHEQ% + E%HLqél,s”iim =+ HVPB,EHii + ||Vng4,€’|i§’n

— 4
< Ct (C el Vurels Y ipsel?s +eC(1+ [ Turl s ) lonells

By Gronwall’s inequality, we deduce

93l z + los.cllZa iy + ellgaellPooys + [ Vngacl?s

t 4
s, e (€ [ 19m057)
x,n 0 T

Now expanding w1 ¢ = u1 + eug + EQU3’5 and using once more (5.42), we get

< C(t)(1+ llps.chi=oll?z + llgae

93020z + ls.cll2a iy + ellgnellPoers + [ Vngacl?s

4
4—d
ol ) exp (2100 (Imclyers Honers, ) ™).

The well-preparedness assumption (5.8) precisely ensures that the initial terms in the
right-hand side are uniformly bounded. Using again Poincaré’s inequality on S and
appealing to a standard continuity argument, the stated estimates on p3. and g4, follow.
The stated estimate on ug . is then deduced from (5.42).

< C(t)(1+llps.cli=ollZ2 +ellgac
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Substep 4.2. Navier—Stokes case Re =0, d = 2.
In the Navier—Stokes case, provided that
X202(1 + Pe)? ([loF[2 +£C) < 1
is small enough, combining (5.35) and (5.41) in such a way that the term ||Vusz||;2 in the

right-hand side of (5.41) can be absorbed into the corresponding dissipation term in (5.35),
while further absorbing the term [|gaell2 < [[Vnga, 6HL2 in the right-hand side of (5.35)

into the corresponding dissipation term iI’l (5.41), we obtaln

diluscllfz +Pe Gllpsellfs + g llgacl?s | Vngacliz |

4
S C(1+ lluseliZz + los.l?s ) 57 (sl + llgaclZ ),

and thus, by Gronwall’s inequality,

o+ IVusel?s + IVpselPs + [ Vagacls

< c(t)(l 2) exp (C(t) /Ot Hvulﬁuﬁgﬁ).

In the 2D case, the exponent in the exponential reduces to ﬁ—d = 2. Then expanding

again u1 . = u1 + cug + 62U375, we can appeal to a continuity argument and the conclusion
follows by noting that the well-preparedness assumption (5.8) precisely ensure the uniform
boundedness of the initial terms. 0

5.4. Proof of Proposition 5.3. The proof mainly consists in inserting the explicit ex-
pressions for g; and go computed in Proposition 5.1 in terms of (ug, pp) and (u1, p1) inside
the systems (5.3) and (5.4). Recalling the definition of stress tensors in (2.5), inserting the
explicit expressions for g1, go in Proposition 5.1, and using the elementary integral identities
n (5.16), we are led to

o1lg1] = N0 Sdil(n@n— 11d) g1 dn = /\H%poD(uO),

and
o2[po, uo] = )\/Sd_l(n@)n)Vuo(n@n)podn = )\%po D(up).

This proves that the couple (ug, pg) solves the system (3.27) with parameters 79 = 1 and

wq(0+2
m=A 23((d+23

Now turning to (u1, p1), we compute
o1lge] = )\GS/Sdl (n®n — éld)ggdn
= )\9% (plD(uo) + poD(U1)) + )‘ed(d+2) < 4dA (ug, po) + 2%/)0[)(1%)2

+ qa= )U0V2p0 (d+4)tr(D(uo)2)Id>.
We also compute

o2lpo, Vui] = )\/Sd_l(n@)n)(Vul)(n@n) podn = )\%pOD(ul),
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as well as
oalp1 + g1, Vo] = A2 p1D(un) + Mgz fo (2 D(uo)2 + Ltr(D(up)?) Id).

Inserting these identities into (5.4), we verify that u; satisfies the fluid equation in (3.28)
for some modified pressure field p; and with the expected coefficients

B B W 2d
n=Magpiry  ad 72 = Agp( (0 73s)-

We turn to the derivation of the corresponding equation for p;. By the defining equations
for p1 in (5.4), we can write

(Or — iA +uop - V)p1 = —u1 - Vpo — (Uon - Vzg1).

Inserting the explicit expressions for g1 in Proposition 5.1, and using the above computations,
we find
(Uon - Vegi) = —725U5(n@n : Vip) = —ﬁU(?APO,

and the conclusion follows for p;. O

APPENDIX A. WELL-POSEDNESS OF THE DOI-SAINTILLAN—SHELLEY SYSTEM

This appendix is devoted to the proof of Proposition 2.1. Let us assume that h = 0
for simplicity, as well as Pe = A\ = § = ¢ = 1, since these parameters play no role in the
analysis. We then omit the subscript € in the notation and we set (u., f:) = (u, f). We
focus on the Stokes case Re = 0 in dimension d = 3, but standard adaptations of the proof
below allow to treat the 2D Navier—Stokes case without important additional difficulty. For
a given distribution function f: Rt x T3 x S? — R*, we shall use the short-hand notation

pri= [ fCm)an.

We split the proof into four main steps.

Step 1. A priori energy estimates: we show that a smooth solution (u, f) of the system (2.5)
satisfies for all ¢ > 0,

IVulligrz < e“lopele. (A1)
losllerz + 190sllziz S € llppelez, (A2)
t T t Hx T
C o
Ifllgers, +1Vaflizee, +1Vafllzrz, S exp (te (14 llopeliiz) JIf ez, (A3)

On the one hand, testing the equation for the fluid velocity u with wu itself, using the
incompressibility constraint, and inserting the form of o1, 02, we find

||Vu||ig—|—/ (Vu:n@n)2f:—/ Vu:(n@n—%ld)f,
v T3 xS2 T3 xS2
and since the second left-hand side term is nonnegative,
IVullz < llogllie- (A.4)

On the other hand, testing the kinetic equation for the particle density f with f itself,
using again the incompressibility constraint, and integrating by parts, we find

SR +IVAIEy 19ty = [ Vafwh(Vuns
’ ’ ’ X
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— _;/ | f[2divy, (7 (Vu)n)
T3 xS?

< IVulz 12 2. (A.5)

~

By Ladyzhenskaya’s inequality, we can estimate the last factor as

1 3 1 3
1712002 S W02 I7150a S 17022 +170E IVaflfs

Inserting this into (A.5), and appealing to Young’s inequality to absorb the norm of V, f,
we deduce

SIFI 4 IVaflZ2 +IVaflZ: S (IVulz +IVuli) 2 - (A6)

Moreover, integrating the equation for f with respect to the angular variable, we get

Opr +u-Vpy —Apf+U0diV</2
S

and thus, testing this equation with py itself and using the incompressibility constraint,

S prlZ2 + IVpsllf2 = Uo/ nf-Vpr S / prlVpygl,
z x T3 xS2 T3

nfdn) = 0,

hence

%pruig + HVPing S ||Pf||ig-
By Gronwall’s inequality, this proves (A.2), and the claim (A.1) then follows after combina-
tion with (A.4). Further combining with (A.6) and appealing again to Gronwall’s inequality,
the claim (A.3) also follows.

Step 2. Construction of approximate solutions.

In order to prove the existence of a weak solution for the system (2.5), we argue by means of
a Galerkin approximation method. More precisely, given k € N, we introduce the following
orthogonal projection on L?(T?),

Py LY(T?) — Fy, = {u e L*(T?) :a(l) =0 for all ||| > k},
where {i(1)},czs stands for the Fourier coefficients of a periodic function u € L?(T3). For
all u € Fj, and s > 0, we obviously have

lullmy < (k) [lullLz. (A7)
Given an initial condition f© € H'NP(T3*NS?), we shall consider the following approximate
system,
—Aug + Vpi = PkdiV(Ul [f]) + PkdiV(UQ [fk, VPkuk]),
O+ dive ((us + Uon) fi) + diva (my (VPrur) i) = A fi + A fr,

div(ug) =0, [psup =0, (A.8)
frli=0 = £,
and we claim that this system admits a weak solution (ug, fi) with
up € Lig(RY; HY(T)), (A.9)
fr € Lin(RYL2NP(T? x §?)) N L (RT; HY(T? x §%)). (A.10)

To prove this, we argue by means of a Schauder fixed-point argument and we split the
proof into four further substeps.
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Substep 2.1. Fixed-point problem.
Given T > 0, let

E = {v € L0, T; HY(T?)?) : div(v) = 0, [ v = o},
and for all v € E define Ag(v) := w as the unique solution of
—Au + Vp = Pidiv(o1]g]) + Prdiv(oz[g, V Pgul),
Org + divy ((v + Uon)g) + divy, (ﬂ#(Vka)ng) = A,g+ Ang,
div(u) =0, [pzu=0,
li=o = f°.
Note that we use the velocity field u and not v in the viscous stress oo in the equation
for u so as to preserve its dissipative structure. The existence of a weak solution wu for the
approximate system (A.8) amounts to finding a fixed point Ay (ux) = ug.
Before going on with the fixed-point problem, we first check that the above system (A.11)

is indeed well-posed and defines a map Ay : £ — FE. First, given v € F, by standard
parabolic theory, the above kinetic equation for g admits a unique weak solution

g € L0, T;L2NP(T? x %)) NL2(0,T; HY (T3 x §?)).

Moreover, the a priori estimates of Step 1 can be repeated to the effect of

(A.11)

c
pglliLse Lz + I Vogllzz < e T”P}“’HLia (A12)
lolprz, +1Vaglhizrz, + [Vagliziz, S exp (CT(+I90ls ) )15z

To ensure the well-posedness of the elliptic equation for w in (A.11), we first need to check
that p, has some additional regularity. Integrating the equation for g with respect to the
angular variable, we find the following equation for pg,

Oipg +v - Vpg — Apy +U0diV(/2 ngdn) =0,
S

and thus, testing the equation with Ap,, we find

S IVRlE + 180l = = [ o)y Vo [ (apg)div( [ ngan)
T T T3 T3 S2

S ol Vegllial[Apglicz + 12806112 [ Vaglliz -

By Ladyzhenskaya’s and Poincaré’s inequalities, the first right-hand side term can be
bounded by

1 3 1 7

[lliealVogliiallApgllz S ol IIVollf Vgl Vgl
1 i

S IIVvHLgHVngﬁgIIVQ,OgIIfjg,

and thus, inserting this into the above, recalling ||[VZpy|l12 < [|ApgllL2, and using Young’s
inequality, we are led to

SVl +18gl25 S IV0laIV04l22 + 11 Vagl2s -

By Gronwall’s inequality, this implies

t
IVpelliz iz +1Angllz 2 S (I90sellz + IV2gllz 12, ) exp (C / Vol ).
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Combined with (A.12), this shows that p, € L>(0,7; H(T%)) N L?(0,T; H*(T?)). In
particular, we infer py(t) € L°°(T?3) for almost all ¢ € [0, T]. With this additional regularity
result for pg, we can now finally ensure the well-posedness of the elliptic equation for u
in (A.11). Indeed, for all ¢ € [0,T7], the weak formulation of this equation for u(t) can be
written as follows: for all w € F,

By g(w,u(t)) = - Vw : Vu(t) + /11'3><SQ (n @n: VPkw) (n @n: VPku(t)) g(t)

= — Vw.Pkal[g(t)].
T3
For almost all ¢, as py(t) € L=°(T?), we note that By, is a coercive continuous bilinear
functional. As in addition we have [|Pyo1[g(¢)][|l2 < [lpg(t)[l 2, we can appeal to the Lax—

Milgram theorem and deduce that there exists a unique solution u € L>(0,T; H(T3)3)
of (A.11). Further recalling (A.12), it satisfies

C
||VUHL§9L§ S HPgHLg?Lg Se THPfOHLg- (A.13)

Letting Ax(v) := u be the solution of (A.11), this shows that we are indeed led to a
well-defined map A, : E — E.

Substep 2.2. Proof that the map Ay : E — FE is compact.
Let (v, ), be a bounded sequence in E, and for all r let (u, := Agv,, gr) be the corresponding
solution of the system (A.11) with v replaced by v,. By (A.13), the sequence (u,), is
bounded in L>(0,T; H(T3)3). By the Aubin-Lions lemma, in order to prove that it is
actually precompact in L>°(0, T; H!(T?3)3), it suffices to check that (u,), is also bounded in
L(0,T; H2(T?)3) and that (8;u,), is bounded for instance in L¥3(0, T; H'(T?)3). On the
one hand, noting that by definition we have u, = Pyu,, and appealing to (A.7), we directly
find

el = 1Bl Se
which shows that (u,), is indeed also bounded in L*(0,T; H?(T?)3). We turn to the
boundedness of time derivatives. Taking the time derivative of the elliptic equation for w,,
we find

— A(Owuy) — Prdiv(oz[gr, V Pi(0wur)]) + V(Oepr)
= Pydiv(o1[0gr]) + Prdiv(o2[0:gr, V Pruy]).
Arguing as for (A.13), we deduce
10urllmy < N[ Peon[Ocgrlllez + [ PeoalOrgr, V Prur] |2 (A.14)

To estimate the two right-hand side terms, we recall the definition of o1, 09, we insert the
equation for g,, we integrate by parts in the n-integrals, and we appeal to (A.7) again. For
instance, for the term involving o1, we find

1Pko1[Ogr]llr2 = )\HHPk /S2 (nen—1I1d) (divx((vr + Uon)gr)

2
x

+divy, (7 (VPyor)ngr) — Apgr — Angr) dn’

= M

3
>RV, [ (n@n = 31) ((0r + Uomlgr) dn
i=1 2
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—Py / Vo (n @ n)mt (VP )ng, dn
S2

— P A, (n®n—éld)grdn—Pk/ Ay(n®n)grdn
s? s2

L2

Sk loellpallgella e + llgrllz 2 -

Noting that we have || Py(h1Psho)|lr2 < ||(Paxh1)(Pih2)ll;2 for all hy, hy € L}(T3), we can
argue similarly to estimate the second term in (A.14). Further using Jensen’s inequality,
we are led to

1Ol S (L [lurlliz ) (XA floellps)llgrllrs vz -

By Ladyzhenskaya’s inequality, this yields

1 3
1Bewellry S (1 arl2) (U Borllm)llgnlli Nl o

The a priori estimate (A.12) for g = g, then ensures that the sequence (0;u,), is bounded
in L83(0,T; H'(T3)3), and the compactness of Ay, follows.

Substep 2.3. Proof that the map Ay : F — FE is continuous.

Given a sequence (v,), that converges (strongly) to some v in E, we need to check that
the image u, := Agv, converges to Aiyv. By compactness of Ay, we already know that up
to a subsequence u, = Apv, converges (strongly) to some w in F, and it remains to show
that it satisfies w = Agv. By definition of A, we recall that u, satisfies the system (A.11)
with v replaced by v,, and we denote by g, the corresponding density. Using the strong
convergence of u, and v, along the extracted subsequence, recalling the a priori estimates
for g,, cf. (A.12), and using weak compactness for g,, we can pass to the limit in the weak
formulation of this system. This shows that the limit w satisfies the system defining Agv,
hence we have w = Apv by uniqueness.

Substep 2.4. Application of Schauder’s fixed-point theorem.
Recall the a priori estimate (A.13), that is,

IAkllze 2 < Ce“llpgellya.
Considering the following non-empty closed convex subset of E,
K = {ueE:|ullLe gy < Cellpsolliz},

the restriction of Ay defines a map Ag|x : K — K that is compact and continuous by
Steps 2.2 and 2.3. By Schauder’s theorem, this map must then admit a fixed point u; € K,
that is, ux = Ag(ug). Combined with the a priori estimates (A.12), this concludes the proof
of the existence of a weak solution of the approximate system (A.8) satisfying (A.9).

Step 3. Existence of a weak solution for the system (2.5).

We argue by means of a Galerkin method based on the approximations defined in Step 2.
For that purpose, given an initial condition f° € L2NP(T? x S?), we start by considering
an approximating sequence of smooth initial conditions (f), C C*° N P(T? x S?) that
converges strongly to f© in L2(T® x S?). By Step 2, for all k, we may then consider the
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solution (uyg, fi) of the approximate system (A.8) with initial condition f;, that is,
—Auy + Vp, = Pkdiv(al [f]) + PkdiV(O'Q [fk, VPkuk]),
O fre + diva ((ug, + Uon) fr) + dive (7 (V Poug)nfr) = Do fr + An f,
div(ug) =0, [psup =0,
fk3|t:0 = f]?a
with
up € L0, T HY(T?)?),
fr € L®0,T;L*nP(T? x $*)) N L2(0,T; H*(T? x $%)).
From Step 2, we further learn that (ug, fx) is uniformly bounded in these spaces. By weak
compactness, we deduce that up to a subsequence uy converges weakly-* to some u in
L>°(0,T; H(T3)), and that f; converges weakly-* to some f in L°(0,7T;L3(T? x S?)) and
weakly in L2(0, 7; H'(T3 xS?)). In addition, examining the equation satisfied by f, a simple
argument allows to check that ; fi is bounded e.g. in L*°(0,7; W ~21(T3 x §?)), so that
the Aubin-Lions lemma further entails that f; converges strongly to f in L2(0, T;L2(T?)3).

These convergences now allow to pass to the limit in the weak formulation of the system,
and we easily conclude that the extracted limit (u, f) satisfies the limiting system (2.5).

Step 4. Weak-strong uniqueness for the system (2.5).
Let (u, f) and (/, f') be two weak solutions of (2.5) with common initial condition

fli=o = f'li=0 = f°,
and assume that (v, f’) further satisfies
W€ L (RYWES(T?)?), (A.15)

e LE(RT;L®(T? x §?)).

loc

Consider the differences U = v — v/ and F' = f — f’. On the one hand, the equations for u
and u/ yield

—AU +VP = div(o1[F)]) + div(oz[f, Vu] — oo[f’, Vu])
= div(o1[F)) + div(oa[f, VU] + o3[ F, Vu']).

Testing this equation with U itself, using the incompressibility constraint, and taking
advantage of the additional dissipation given by o9, we get

VUl < lloalFlliez + lloz[F, V]|l
< (V) 1PN - (A.16)
On the other hand, the equations for f and f’ yield

HF + divy ((u + Upn)F) + divy, (7 (Vu)nF) — Ay F — A, F
= —div,(Uf') — div, (7 (VU)nf').
Testing this equation with F itself, and integrating by parts, we get
SEIFIZ +IVaFI2 +[VaFIZ;
—;/ |F2div, (W#(Vu)n) +/
T3 xS2

e VxF-Uf’+/ Vo F - w-(VU)nf’
X

T3 xS2
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< IVl llFIRa 2 + Ve Fllgz 10l e, + 1VaFllez VUl 1 lees, -
By Ladyzhenskaya’s inequality, the first right-hand side term can be bounded by

1 3
IValle P2 e S IVullizl FIE 1P,

1 3
S IVulzlFIZ: +19uliIFlE IVaFl,

Inserting this into the above and appealing to Young’s and Poincaré’s inequalities, we are
led to
LI, < (IVulle + IVulia) 1FI2: + VU207 1,

and thus, recalling (A.16),
SIFIZ S ((L+IVals) + 0+ IV ) 1 1R, ) IFIZs

By the assumed regularity of w,u/, f/, this implies F' = 0 by Gronwall’s inequality, hence
also U = 0 by (A.16). O

APPENDIX B. PERTURBATIVE WELL-POSEDNESS OF ORDERED FLUID EQUATIONS

This section is devoted to the proof of Propositions 3.2, 3.3, and 3.4. In this sec-
tion, multiplicative constants C are implicitly allowed to further depend on parameters

Pea Nos M1, 72

B.1. Proof of Proposition 3.2. First note that, if vy, v satisfy equations (3.18) and (3.19),
then their superposition 4. = vy + ev; satisfies (3.17) in form of

Re(0; + 1. - V). — div(d.) + Vp. = h + 2R,
0= = noAi(Ue) + ey1 AL () + ev2 A1 (ue)?,
div(a:) =0,

in terms of the remainder
Re = (v - V)or = yidiv( (@ — g A +v0 - V)2D(v1) + (Vo) 2 D(v1) + 2 D(w1) (Vo)
- 271div((vl V) D(@.) + (Vor)T D(az) + D(ag)(Vvl))

- 472div(( D(v0) D(v1) + D(v1) D(vo)) + sD(v1)2).

We turn to the well-posedness and regularity theory for equations (3.18) and (3.19). In
the Stokes case, given s > 0 and h € L2 (R*; H*(T4)4) N WL(RT; H~2(T4)9), the

loc
Stokes theory ensures that equation (3.18) admits a unique global solution vy in the

space L (R*; H5T2(T)d) 0 WL (R H*(T9)%). Then using this v in the source terms

loc loc
of equation (3.19), and using the Sobolev embedding with s > % —1, equation (3.18) admits
a unique global solution vy € L2 (R*; H5+1(T4)%).

Next, in the 2D Navier—Stokes case, given s > 0, h € LIQOC(RJF;HS(TQ)Q), and u°® €
H*+1(T?)2 using Ladyzhenskaya’s inequality, the Navier-Stokes theory ensures that equa-
tion (3.18) admits a unique global solution v in L{S, (RT; H*+1(T2)2)NLE (R H5+2(T?)2)N
H (RT; H5(T?)?). Then using this vy in the source terms of equation (3.19), and using
the 2D Sobolev embedding with s > 0, equation (3.19) admits a unique global solution

v € LS (R H3(T?)2) N LE (R*; H*+1(T?)2). This ends the proof of Proposition 3.2. [

loc
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B.2. Proof of Proposition 3.3 in Stokes case. Let Re = 0 and d < 3. We split the
proof into three steps, first deriving the suitable reformulation of the equations, and then
proving existence and uniqueness of smooth solutions.

Step 1. Reformulation.
Equation (3.20) implies in particular

h = —noAie — ediv(Fy(ie)) + e2(8; — pg)h + Vi,
and therefore, using this to replace 5%(& — g-)h in the right-hand side of (3.20),
— noAte + Vpe = h + ediv(Fo(ue))

— 2.0, — i) ( — mAT + Vp — ediv(Fy(a)) +22(0 — g)h).
Recalling the definition of Fy, cf. (3.21), and reorganizing O(e) terms, we precisely deduce
the second-order fluid equation

{ —div(.) + Vp. = h + £2R.,

7. = noA1(te) + ey1 Ay () + ey2Ar (:)?,

for some modified pressure field p. and some remainder term
R i= 20 — ) (div(Fo(uc)) — (3 — fp)h).

Step 2. Existence.
Let s > g be fixed. We proceed by an iterative scheme. We set w4y := 0 and for all n > 0,

given @, € H*t (T4, we define ,41 € H**(T?)? as the unique solution of the linear
problem

—NoAlUpt1 — E’yldiv((ﬂn . V)QD(an_H)) + Vpnt1
— (1 - 2(3, — A))h + ediv(Go(an)). (B.1)
div(an+1) = 0,

where we have set
Go(u) == 7 ((Vu)T2D(u) + 2D(u)(Vu)) + Y2(2D(u))?.
We split the proof into two further substeps.

Substep 2.1. Sobolev a priori estimates.
Applying (V)* = (1 — A)*/2 to both sides of the above equation, testing it with (V)5 1,
and using the incompressibility constraint, we find

m [ VO = [ (9 (1= <R 0= A)(V)h

—€ V<V>Sﬂn+1 : <V>SG0('&H) - 25'71/ D(<V>Sﬂn+l) : [<V>Sa Up - V]D(anJrl)a
Td Td

hence, by the Cauchy—Schwarz inequality,
IVUntllms S 1Rl gs—r + el (0 — A)h]| gps—1 + €| Go(tn) || g
+ell{V)%, tp - VID(tn41) (2. (B.2)
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To estimate the last term, we use the following form of the Kato—Ponce commutator
estimate [KP88, Lemma X1]: for all u,v € C°°(T9)? and all p, q € [2, 0] with % + % =1
we have

(V)% w- VID()llrz Ss llullwzallollyze + lully e vl e (B.3)

and thus, properly choosing p, ¢ and appealing to the Sobolev embedding with s > %, we
deduce

(V)% u- VD)2 Ss lull o llvll st

Using this to estimate the last right-hand side term in (B.2), inserting the definition of Gy,
and further appealing to the Sobolev embedding with s > %, we are led to

Nl s Il + 1@ — Al s + ellnlZyeer + llall oo e s

Provided that ||t || ;s+1 < Co and that eCo <5 1 is small enough, the last right-hand side
term can be absorbed and we are led to

stz So Bl +£ll@ = A)hll o1 + 3.

Choosing Co := Cs (||| o1 +€[[(0 — A)h|gs—1) for some Cs >, 1 large enough, we then
deduce, provided that eCy < 1 is small enough,

lanlger < Co = Jansillgen < Co.

Recalling the choice ug = 0, this proves by induction that we have for all n > 0, provided
that € <5, 1 is small enough,

H’l_LnHH;+1 < Cp =~ HhHH;A +el|(0 — A)hHH;—l. (B.4)
Substep 2.2. Contraction.
The difference 11 — , satisfies
= N0A(Un+1 = Un) + V(Pns1 — Pn) = 571div((ﬂn - V)2D(tn 41 — ﬂn))
+ E’yldiv(((ﬂn — 'an—l) . V)2D(ﬂn)) + €diV(G0(’l_Ln) — Go(ﬂn_l)).

Testing this equation with @,+; — %, and using the incompressibility constraint, we get
similarly as in (B.2) above,

IV (Unt1 — an)HLi S ell(@n — Up—1) - VD(an)HLg + €l|Go(un) — GO(an—l)HLga
and thus, inserting the definition of Gy and appealing to the Sobolev embedding with s > g7
IV (tn41 — ﬂn)”Li Ss 5H(ﬂnflvﬂn)”H;+1Hv(ﬂn - ﬂnfl)HLfD-
Provided that € <5, 1 small enough, inserting the a priori estimate (B.4), we deduce
|V (41 — ﬂn)”Li < %Hv(ﬂn - ﬂn—l)HLi‘

Together with the a priori bound (B.4), this contraction estimate entails that the sequence
(thy)n converges weakly in H*T1(T?9)9 to some limit a. € H*1(T9)?. By the Rellich theorem,
recalling s > %, this allows to pass to the limit in (B.1) and to deduce that the limit @, is a
solution of the nonlinear equation (3.20). In addition, it automatically satisfies the a priori
estimate

el a1 s 1Bl ga-1 + [0 = B)h] gyz-1- (B.5)
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Step 3. Uniqueness.
Let s > % be fixed. Let ., 7. € H*T'(R?)? be two solutions of (3.20). Their difference
then satisfies

— oA (@ — U) + Vpe = enidiv((@e - V)2D(u: — v:))
+ 5'71div(((as —e) - V)2D(T7€)) + ediv(Go(:) — Go(ve))-
Arguing as in Step 2.2 above, we easily deduce
IV (G = 9e)lIf2 S ell(te, 0e)ll oo IV (e — e) I f2-

By the a priori estimate (B.5) for ., 0e, we deduce . = v, provided that ¢ <, 1 is small
enough. ]

B.3. Proof of Proposition 3.3 in Navier—Stokes case. Let Re = 1 and d = 2. We
skip the proof of well-posedness, which is a straightforward modification of the above proof
in the corresponding Stokes case. It remains to derive the suitable reformulation of the
equations. For that purpose, first note that equation (3.22) can be rewritten as

(O + e - V)ite — noAtie — e71(m0 — pg) A%t + Ve
= h+ ey1div(2D(h)) + ediv(Fy(a.)) — eyadiv(2D((. - V)a.)), (B.6)
where Fy is defined in (3.21). This yields in particular the following relation,
h = (0t + e - V) — noAie + Ve
—ey1(no — ﬁ)Azas —endiv(2D(h)) — ediv(Fo(ue)) + gfyldiv(2 D((@. - V)ﬂe)).

Using this to replace ey1div(2D(h)) in the right-hand side of (B.6), we find after straight-
forward simplifications

(8t + Ug - V)ﬂg — noAu. + Vp. = h+ €diV(F0(fL5))
+ ey div [QD ((8,5 — P%A)ﬂg + Vpe —evi(no — P%)A%LE
— emdiv(2D(h)) — ediv(Fo (i) + eyadiv(2D( (. - V)ag))ﬂ .

Recalling the definition of Fy, cf. (3.21), and reorganizing O(g) terms, we precisely deduce
the second-order fluid equation

(0 + e - V)t — div(c.) + VPL = h + %R,
O = 770A1 (’L_Lg) + 6’)/114/2(@_&5) + 8’)/2141(’&5)2,

for some modified pressure field P! and some remainder term
R i= —div|2D (3100 — f5) A% + 31div(2D(R) + div(Fy ()
— y1div(2D((. - V)a.)) ) .

This concludes the proof. O
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B.4. Proof of Proposition 3.4. Let (ug,po) and (u1,p1) satisfy the systems (3.27)
and (3.28), respectively. Their superposition (., pe) = (ug + eu1,po + €p1) is easily
checked to satisfy the non-homogeneous second-order fluid equations (3.26) in the form

Re(0; + @ - V). — div(c.) + Vp. = h + 2R,
atﬁe (Ple + €M0>Aﬁ€ + U - Vpe = 52887
= (770 + 771P5)A1(ua) + 571A2(p67 us) + 572‘41(“6) s
dlv Ue) =
(Pe U6)|t=0 = (p°,u).
with explicit remainders given by

Re = —Mgigdiv(pr D(ur))

_rylédlv(Az(ﬂE,ﬁE) — Al (up, po)) )‘9d2(d+4) div(ﬁ‘E D(a8)2 — po D(u0)2)

—Ad(d+2£§‘(d+4) div (pO(D(aE) D(u1) + D(u1) D(@)) + 2p1 D(@a)2>
+Re(u; - V)uy — div(oz[p1 + g1, Vur]),
S. = —ﬁU@Am +uy - Vpy.
In the proof of Proposition 5.2, we recall that we have actually shown that after elimination
of g1, g2 the solutions (ug,p1) and (uy, p2) of the hierarchy (5.3)—(5.4) precisely satisfy
equations (3.27)—(3.28) (for a specific set of parameters). Hence, the well-posedness of
hierarchical solutions of (3.27)-(3.28) follows from the proof of Proposition 5.1, which

indeed concerns the well-posedness of the hierarchy (5.3)—(5.4) in the Stokes case Re = 0.
The proof is analogous in the 2D Navier—Stokes case and is skipped for conciseness. U

APPENDIX C. DERIVATION OF THIRD-ORDER FLUID EQUATIONS

In this section, we extend Proposition 5.3 and derive the corresponding equations to
next order as stated in Section 4.2 — we keep the derivation formal and skip detailed error
estimates for shortness. By definition of wg, w1, us, po, p1, p2 in Proposition 5.1, we first note
that (g, pe) now satisfies

Re(0; + @ - V) — At + Vpe = h +div(o1][g1 + €92 + €2g3))
+div(og[pe + g1 + %92, Viie]) + O(%), (C.1)
(0 — %A + 2z - V)p: = —(Uon - Vi (eg1 + 5292)> + 0(63),

and it remains to evaluate the different contributions of g1, g2, g3 in the right-hand side.

C.1. Equation for particle density. Using n = —d%

1Apn, we have

(Uogn - Va(egr + 2g2)) = €Uy diV<][d ) n(g1 + €g2) dn)
i

= —e7Y Ug dlv(]éd1 nAy (g1 +€g2) dn).
Using the defining equations for g1, go, we find
An(g1 +e92) = Upn - Vypo + divy, (Wﬁ(vuo)npo)
+e(0 — Ay +uo - Va)g1 + P (Uon - Valpr + 1))
+ edivy (m;, L(Vur)npy + 7= (Vue)n(p1 + q1))-
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Inserting this identity into the above, as well as the explicit expression for g; in Proposi-
tion 5.1, then recalling (5.15) and (5.17), and using integral computations (5.16),

Ug _
(Upn - Va(egr + €2g2)) = —E T Ape
202 . _ _ o _
— & g iy div (45 D(a) V. + ddiv(p- D(w)) ) + O(e?).
Inserting this computation into (C.1), we precisely get the claimed equation (4.2).

C.2. Equation for fluid velocity. As the obtained equation (4.2) for p. shows that
homogeneous spatial densities are stable to order O(g%), we can focus for simplicity on the
homogeneous setting,
pe = wid +0(&?).
In addition, we shall focus on the case of infinite Peclet number and of vanishing particle
swimming velocity,
Pe = o0, Uy=0,

which substantially simplifies the macroscopic fluid equations (recall however that our
rigorous results do not hold for Pe = oo). We start by computing the contribution of the
elastic stress o7 in (C.1). Using that

non—3Id=-4A,(n®n— 11d),

we have by definition

o1lg1 + €90 +€%g3] = A0 /Sdl(n Xn — éId) (g1 +eg2 +€2g3)(-,n) dn

= —)\921d/ (n®@n—21d) Ay(g1 + g2 + €2g3) (-, n) dn.
gd—1
Using the defining equations for g1, g2, g3 with Uy = 0, in form of
An(gr +ega +€%g3) = widdivn(wj(Vﬂa)n) +e(0 + te - Vi) (g1 + €g2)
+ edivy, (m (Vi )n(g1 + £g2)) + O(e3),
the above becomes, after straightforward simplifications and integrations by parts,
ailgr + €92 + g3l
= L A0D(a.) : / (n®n)(n®@n— L1d);;dn
gd—1

T 2wy

— eN05 (0 + e V)/ (n®@n—L1d);;(g1 +eg2)(-,n) dn

Sd—1
+ e 55 (Viie) ki /Sdl(5iknjnz + djpning — 2ningngny) (g1 + €g2) (-, n) dn
+0(&?).
Now inserting the explicit expressions for g1, go obtained in Proposition 5.1, in form of

(g1 +92)(m) = g (n@n — 11d): (D(ﬂs) — ek Ay(u.) + €} D(a€)2)

+e5; ((<n @n): D(@))” - ﬁtr(D(aa)z)) +0(c?), (C.2)
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using the explicit integrals (5.16), and using that tr(As(u)) = 4tr(D(w)?), we are led to
g p g ) g )

o1lg1 +eg2 + 6293]

N2
= Mgy A1 () — €N gy A ()

— Ny (0 e V) Ax () = (Vi) Ay () = Ay () (Vo))

+ &N gy (90 + e - V) Ag(e) = (Vi) As (i) — Ag(iae) (V) ")

— M ((at + e - V)AL ()2 — (Vi) Ay () — A1(ﬂ5)2(Va€)T>
o+ 2N gty (A1 () As(5) + Aa() A (i)

20 (5d+12) A1(ﬂe)3

4d3(d+2)(d+4)(d+6)

~ M parayrtayars A1 (1) r(A1(5)?) + R +0(%),

for some scalar field R that will be absorbed in the pressure field. Now recalling the
definition of Rivlin—Ericksen tensors, cf. (3.2), and appealing to the following matrix
identities, for any matrix B,

—(Vu)B — B(Vu)' = (Vu)"B + B(Vu) — (A1(u)B + BAi(u)),
(0 +u-V)A (1) — (Vu) Ay (u)? — Ay (u)?(Vu)! = Aj(u)As(u) + Az (u) Ay (u) — 3A; (u)?,

we are led to

oilgr + 692 + e2gs]

= Mot Ay (@) — N Ao (e) + eNo b Ay (7))

1
2d(d+2) 1d2(d+2)

+ 82)\98d3(d+2) AS(ﬂs) € )\98d3(d+4) (Al (ﬂs)AZ(as) + AZ(as)Al (ﬂ5)>

2 3d?+19d+24 - d+3 = \2
te )‘94d3((d+2)(d+4)(d)+6)Al(“f) - ¢ )‘94d2(d+2() (d—i)-4)(d+6)A (t2e)tr(As(e)”)

+ R.Id4+0().

Further recalling that A (u)® = 3 A;(u)tr(A;(u)?) + 3tr(A;(u)?) in dimension d < 3 by the
Cayley—Hamilton theorem with tr(A;(u)) = 0, we obtain

2d2(d+4) (d+4)

a1lg1 + £g2 + &% g3)
= )\02d(d+2)A ( ) 8)\04d2(d+2)A ( ) +€)\02d2(d+4)A1(ﬂe)2

+ 52)\08d3(d+2) Ag(ﬂa) — EQAQm (Al (ﬂE)AQ(ﬂE) + Az(ﬂg)Al (a€)>

+ NI A, () or (A1 (7)) + R 1A +O(E%),

(C.3)

up to modifying the scalar field R..
Next, we turn to the computation of the contribution of the viscous stress o3 in (C.1).
We have by definition

ool +egr+e°ge, V] = A /Sd1 (n®n)(Vie)(n @n) (7 + g1+ e?ga) dn,

and thus, using the explicit integrals (5.16),
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Ug[w%l +eq1 + 6292, Vag]

= Ay (d+2) D(ue) + e , l(n @ n)(Vie)(n®n) (g1 +eg2)dn + R.1d,
§d—

where again R. stands for some scalar field that can be absorbed in the pressure field.

Inserting the explicit expressions for gi, g2 obtained in Proposition 5.1, in form of (C.2),

and computing integrals as above, we easily find
o2lo +eg1 + €292, Vi) = Ay (d+2) Al(“e) + 5/\‘(d+2)‘(d+4‘)‘41(ﬂ€)2

2 5d+12 —\3
te A (d+(2)(d+4))(d+6) A (ue)

2_94—
+ 2\ grrarairinare A1 (@)tr(A1 (@)%) + O(e%) + R 1d.

Using again Aj(u)® = £A;(u)tr(A;(u)?) + $tr(A1(u)?) in dimension d < 3, this becomes

02[& +eg1 + %o, Vi = )“d(lerz)’A (Ua) + 5/\d(d+2;(d+4)A1(a5>2

2
+ 2\ g sy A (e )b (A1 (@12)2) + R 1d +O().

Inserting this together with (C.3) back into (C.1), we precisely get the claimed third-order
fluid equation (4.3). O
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