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Abstract. We study particle systems with singular pairwise interactions and non-vanishing diffusion
in the mean-field scaling. A classical approach to describing corrections to mean-field behavior is
through the analysis of correlation functions. For bounded interactions, the optimal estimates on
correlations are well known: the m-particle correlation function is GN,m = O(N1−m) for all m. Such
estimates, however, have remained out of reach for more singular interactions. In this work, we develop
a new framework based on linearized correlation functions, which allows us to derive robust bounds
for systems with merely square-integrable interaction kernels, providing the first systematic control of
correlations in the singular setting. Although at first not optimal, our estimates can be partially refined
a posteriori using the BBGKY hierarchy: in the case of bounded interactions, our method recovers the
known optimal estimates with a simplified argument. As key applications, we establish the validity of
the Bogolyubov correction to mean field and prove a central limit theorem for the empirical measure,
extending these results beyond the bounded interaction regime for the first time.
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1. Introduction

1.1. General overview. We consider the Langevin dynamics for a system of N exchangeable particles
with pairwise interactions and non-vanishing diffusion in velocities. Focusing for simplicity on systems
on the periodic torus Td, in space dimension d ≥ 1, the dynamics is given by the following system
of SDEs: denoting by ZN,i = (XN,i, VN,i) the positions and velocities of the particles in phase space
X := Td × Rd, {

dXN,i = VN,idt,

dVN,i = 1
N

∑
j:j 6=iK(XN,i, XN,j)dt+

√
2dBi

t, 1 ≤ i ≤ N, (1.1)

where K : (Td)2 → Rd is an interaction kernel and where {Bi}1≤i≤N are independent standard Brow-
nian motions in Td. The scaling reflects the mean-field regime. Switching to a statistical perspective,
we introduce the joint probability density FN on the N -particle phase space XN . The dynamics (1.1)
then formally leads to the Liouville equation

∂tFN +
N∑
i=1

vi · ∇xiFN =
N∑
i=1

4viFN −
1

N

N∑
i 6=j

K(xi, xj) · ∇viFN . (1.2)

We assume the particles are exchangeable, meaning FN is symmetric with respect to permutations of
the variables zi = (xi, vi) ∈ X. For simplicity, we assume that at initial time t = 0 particles are chaotic
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in the sense of
FN |t=0 = f⊗N◦ , (1.3)

for some f◦ ∈ P∩L1(X), but this initial assumption is not really restrictive in view of de Finetti’s theo-
rem. Although we focus on underdamped dynamics on Td, our methods extend with minor adaptations
to particle systems on Rd, with or without confinement, as well as to the corresponding overdamped
dynamics (see Remark 1.2 below).

In the mean-field limit N ↑ ∞, we consider the evolution of the joint phase-space density of finite
subsets of typical particles, as described by marginals of FN ,

FN,m(z1, . . . , zm) :=

ˆ
XN−m

FN (z1, . . . , zN ) dzm+1 . . . dzN , 1 ≤ m ≤ N.

As is well-known, for chaotic initial data (1.3), particle correlations are expected to remain negligible
over time to leading order: more precisely, for all m ≥ 1,

FN,m − F⊗mN,1 → 0, as N ↑ ∞.

As a consequence of this so-called propagation of chaos, we could deduce the mean-field approximation

FN,m → f⊗m, as N ↑ ∞, (1.4)

where f satisfies the Vlasov-Fokker-Planck equation{
∂tf + v · ∇xf −4vf + (K ∗ f) · ∇vf = 0,
f |t=0 = f◦,

(1.5)

with the short-hand notation (K ∗ f)(x) =
´
Td×Rd K(x, x′)f(x′, v′) dx′dv′. Such a result has been

established in various settings and we refer e.g. to recent work [4] and references therein.
To capture deviations from the mean-field limit (1.4), a classical approach is to study the asso-

ciated correlation functions {GN,m}1≤m≤N , or so-called Ursell functions, which describe connected
correlations between the particles. These considerations have their origins in equilibrium statistical
mechanics, see in particular [13, Chapter 13] and [16, Chapter 4], and play an important role in some
recent developments in kinetic theory, e.g. [15, 3, 9, 8]. More precisely, correlation functions associated
with the joint density FN are defined via the cluster expansion

FN (z1, . . . , zN ) =
∑
π`[N ]

∏
B∈π

GN,]B(zB), (1.6)

where the sum is over partitions π of the index set [N ] = {1, . . . , N}, where the product is over blocks of
the partition, B ∈ π, and where we use the short-hand notation zB = (zi1 , . . . , zik) for B = {i1, . . . , ik}.
We also denote by ]B the cardinality of the block B. Together with the ‘maximality’ requirementˆ

X
GN,m(z1, . . . , zm) dz` = 0, for 1 ≤ ` ≤ m and m ≥ 2,

it is easily checked that this expansion (1.6) uniquely defines correlation functions {GN,m}1≤m≤N .
Alternatively, via Möbius inversion formula over the lattice of set partitions, correlation functions can
be recursively defined by

GN,m(z1, . . . , zm) =
∑
π`[m]

(]π − 1)!(−1)]π−1
∏
B∈π

FN,]B(zB), 1 ≤ m ≤ N, (1.7)

where ]π stands for the number of blocks in a partition π. This means in particular

GN,1 = FN,1, GN,2 = FN,2 − F⊗2N,1, GN,3 = FN,3 − 3 sym(FN,1 ⊗ FN,2) + 2F⊗3N,1,

and so on, where ‘sym’ stands for symmetrization of tensor fields. Formal considerations based on the
BBGKY hierarchy suggest that these correlations should scale like

GN,m = O(N1−m). (1.8)
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Such estimates would yield a refined understanding of the statistical deviations from the mean-field
limit, but their derivation is challenging. So far, the bounds (1.8) have been rigorously established only
for systems with smooth interactions [7] and for bounded interactions with non-vanishing diffusion [11].
In this work, we aim to extend these results to systems with more singular interactions, covering the
second-order setting (1.1) where the diffusion is degenerate and acts only in velocity.

Handling unbounded interactions presents significant challenges, particularly for second-order dy-
namics. For instance, one cannot simply assume K(x, ·) ∈ Lp(X)d since K depends only on positions
while velocities range over the unbounded space Rd. As in [4], this forces the introduction of suit-
able weighted spaces to avoid mixed-norm complications. At the same time, the diffusion in velocity
remains crucial to estimate certain terms in the hierarchy.

Although we cannot reach the expected O(N1−m) scaling in the singular setting, we show that
suboptimal correlation bounds can still be derived and effectively used to capture corrections to the
mean-field behavior. Our approach relies on hierarchical methods, with one key twist: since the
BBGKY hierarchy for standard correlation functions becomes too singular in case of unbounded inter-
actions, we develop a new framework of linearized correlation functions, inspired by [5, 2], for which
linear hierarchical methods remain tractable. This allows us to obtain direct a priori estimates that,
although initially suboptimal, can be sharpened a posteriori by exploiting the BBGKY hierarchy. This
a posteriori refinement is reminiscent of a similar procedure in [2]. In case of bounded interactions,
our approach recovers the optimal estimates of [11], but with a significantly simpler argument.

1.2. Main results. The following result provides nontrivial L2 estimates on correlation functions in
case of square-integrable interaction forces deriving from a potential with exponential integrability.
More precisely, we consider weighted L2 norms with inverse Maxwellian weight

ωβ(z) := e
1
2
β|v|2 , z = (x, v).

Our estimates do not match the expected scaling (1.8): we only show GN,m = O(N−m/2) in L2,
cf. (1.9) below, together with the weak convergence Nm/2GN,m ⇀ 0, cf. (1.10). We do not know
whether stronger estimates can be expected to hold in the present singular setting. As we shall see,
the present estimates are anyway already sufficient for various applications.

Theorem 1.1 (Correlation estimates). Assume that K belongs to L2((Td)2)d and derives from a
potential,

K(x, y) = −∇W (x− y),

and further assume that the latter satisfies, for some β > 0,

W− ∈ L∞(Td), sup
x∈Td

ˆ
Td

(1 + |K(x, y)|2) eβW (y) dy <∞,

where W− stands for the negative part of W . Assume that there is some T0 > 0 and a weak solution f
of (1.5) on [0, T0] with, for some β > 0,

f ∈ L∞t (0, T0;L
∞
x (Td;L2

v(ωβ))),

W ∗ f ∈ W 1,∞
t (0, T0;L

∞
x (Td)) ∩ L∞t (0, T0;W

1,∞
x (Td)).

Then there exist a time T∗ ∈ (0, T0] and some β∗ > 0 such that for all 2 ≤ m ≤ N and t ∈ [0, T∗],(ˆ
Xm
|GN,m(t)|2ω⊗mβ∗

) 1
2 ≤ CmN

−m
2 , (1.9)

for some constant Cm only depending on d,m,K, f . In addition, in the weak sense, for all m ≥ 3,

N
m
2 GN,m

∗
⇀ 0, in L∞(0, T∗;L

2(ω⊗mβ∗ )). (1.10)

Remark 1.2 (Overdamped dynamics). For the corresponding overdamped particle system (first-order
dynamics), the same correlation estimates hold on L2(Tdm) if we only assume K ∈ L2((Td)2)d with
(div(K))− ∈ L∞((Td)2), without requiring K to derive from a potential.
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As a first application of the above correlation estimates, we deduce the (qualitative) accuracy of
the Bogolyubov correction to mean-field approximation. Note that propagation of chaos in item (i)
below can be proven for more singular interactions, cf. [4], but this is the first result regarding the
Bogolyubov correction beyond the case of bounded interactions [7, 11].

Corollary 1.3 (Bogolyubov correction). Let the same assumptions hold as in Theorem 1.1. Next
to the solution f of the mean-field equation (1.5), we consider the weak solution fN of the corrected
equation{

∂tfN + v · ∇xfN −4vfN + (K ∗ fN ) · ∇vfN = − 1
N

´
XK(x− x∗) · ∇v(Ḡ2 − f⊗2)(z, z∗) dz∗,

fN |t=0 = f◦,

where Ḡ2 satisfies the Bogolyubov equation{
∂tḠ2 + L

(2)
f Ḡ2 = −

∑2
k 6=`

(
K(xk − x`)− (K ∗ f)(xk)

)
· ∇vkf⊗2,

g|t=0 = 0.
(1.11)

where L(2)
f is the 2-particle Vlasov operator linearized at f , on L2(ω⊗2β ),

L
(2)
f = Lf ⊗ Id + Id⊗Lf , Lfh = v · ∇xh−4vh+ (K ∗ f) · ∇vh+ (K ∗ h)(x) · ∇vf.

Then the following results hold:
(i) Propagation of chaos: for all 1 ≤ m ≤ N and t ∈ [0, T∗],

‖FN,m(t)− f(t)⊗m‖L2(ω⊗mβ∗ ) ≤ CmN
−1,

for some constant Cm only depending on d,m,K, f .
(ii) Bogolyubov correction:

N(FN,1 − fN )
∗
⇀ 0, in L∞(0, T∗;L

2(ωβ∗)),
NGN,2

∗
⇀ Ḡ2, in L∞(0, T∗;L

2(ω⊗2β∗ )),

and in addition, for all m ≥ 1,

N(FN,m − f⊗mN )
∗
⇀

∑
1≤k<`≤m

Ḡ2(zk, z`)f
⊗m−2(z[m]\{k,`}), in L∞(0, T∗;L

2(ω⊗mβ∗ )).

As a second application of the above correlation estimates, we establish a (qualitative) central limit
theorem (CLT) for fluctuations of the empirical measure,

µN := 1
N

∑N
i=1 δZN,i ,

where we recall that t 7→ {ZN,i(t)}1≤i≤N stands for particle trajectories (1.1), which are well-posed
in the strong sense if we further assume e.g. K ∈ W 1,1, cf. [6, 12]. Due to their subcritical scaling,
correlation estimates (1.9) are of no use on their own to deduce a CLT, but we can rely on the weak
convergence (1.10). To the best of our knowledge, this is the first CLT for the empirical measure beyond
the case of bounded interactions. As the proof relies on hierarchical techniques, it only captures
the fluctuations of the empirical measure at fixed times, without providing information about time
correlations along trajectories. In the case of bounded interactions, a functional CLT for the law of the
full process {N1/2(µN − f)(t)}t≥0 was established in [17], and optimal error estimates were obtained
in [7, 1] for smooth interactions.

Corollary 1.4 (CLT). Let the same assumptions hold as in Theorem 1.1, and further assume that K
belongs to W 1,1((Td)2)d to ensure strong well-posedness of the trajectories. Then we have for all
t ∈ [0, T∗] and ϕ ∈ C∞c (X),

N
1
2

ˆ
X
ϕ(µN − f)(t) →

ˆ
X
ϕν(t), in law, (1.12)
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where the limit fluctuation ν is the centered Gaussian process that is the unique almost sure distribu-
tional solution of the Gaussian linearized Dean-Kawasaki SPDE,{

∂tν + v · ∇xν −4vν + (K ∗ ν) · ∇vf + (K ∗ f) · ∇vν = divv(
√
fξ),

ν|t=0 = ν◦,

where ξ is a vector-valued space-time white noise on R+ × Td ×Rd and where ν◦ is the Gaussian field
describing the fluctuations of the initial empirical measure in the sense that N1/2

´
X ϕ(µN − f)|t=0

converges in law to
´
X ϕν

◦ for all ϕ ∈ C∞c (X).

1.3. Improved estimates for K ∈ L∞. In case of bounded interaction forces, we show that all our
estimates can be improved: we obtain the optimal scaling (1.8) and the estimates are shown to hold
globally in time (up to exponential time growth). In this way, we recover the result previously proven
in [11], but with a substantially shorter proof. Note that we do not try to improve on them-dependence
in these estimates. We refer to Section 6 for details.

Theorem 1.5. Let K ∈ L∞((Td)2)d, f◦ ∈ L2(ωβ) for some β > 0, and let f be a global weak solution
of (1.5). Then the following improved correlation estimates hold for all 1 ≤ m ≤ N and t ≥ 0,(ˆ

Xm
|GN,m(t)|2ω⊗mβ(t)

) 1
2 ≤ (CeCt)C

m
N1−m, (1.13)

where we have set β(t) := β
1+4βt and where the constant C only depends on d, β,K, f◦.

Remark 1.6. From the above improved correlation estimates, the statement of Corollary 1.3(ii) on the
accuracy of the Bogolyubov correction can also be improved accordingly: instead of weak convergences,
we can deduce optimal global error estimates O(eCtN−1) in L2(ωβ(t)) for all t ≥ 0. We skip the details
for shortness.

Notation.
— We denote by C ≥ 1 any constant that only depends on the space dimension d and on controlled

norms of the interaction kernel K and of the mean-field solution f . We use the notation . for
≤ C× up to such a multiplicative constant C. We add subscripts to C,. to indicate dependence
on other parameters.

— For β > 0, we denote by ωβ(z) = eβ|v|
2/2 the inverse Maxwellian weight for z = (x, v) ∈ X.

— We use the short-hand notation [m] = {1, . . . ,m}, and we set zB = (zi1 , . . . , zik) for an index subset
B = {i1, . . . , ik}.

2. Tools for global hierarchical estimates

To solve hierarchies of differential inequalities, as those appearing in the analysis of the BBGKY
hierarchy, standard methods are based on Cauchy-Kovalevski type arguments and lead to estimates
that are restricted to short times (see e.g. [10, Section 1.11.2]). The following result shows that
such estimates can be extended globally in time whenever exponential a priori estimates are already
available. This follows from similar computations in [14, Section 3] and will be repeatedly used in the
sequel.

Lemma 2.1 (Global hierarchical estimates). Given T ∈ (0,∞], let {an}n≥1 be a sequence of con-
tinuous maps an : [0, T ) → R+ satisfying the following hierarchy of differential inequalities for some
parameters A,R ≥ 1: for all n ≥ 1,{

d
dtan ≤ n(an + an+1) + n3R−2(an−1 + an−2), on [0, T ),

an(0) ≤ n2n(AR−1)n.
(2.1)

Further assume the following a priori estimates for some B ≥ 1: for all n ≥ 1 and t ∈ [0, T ),

an(t) ≤ Bn. (2.2)
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Then there is a constant C ≥ 1 (only depending on B, and not on T,A,R) such that we have for
all n ≥ 1 and t ∈ [0, T ),

an(t) ≤ eCnt(Cn2)n(AR−1)n. (2.3)

Proof. We shall show that there is a universal constant C ≥ 1 such that

an(t) ≤ (CBn2)n(AR−1)n, for all 0 ≤ t < (CB)−1 ∧ T and n ≥ 1, (2.4)

from which the conclusion (2.3) indeed follows by a direct iteration. In order to prove (2.4), we note
that for n ≥

√
R there is nothing to prove in view of the a priori estimates (2.2): indeed,

an ≤ 1 ≤ n2nR−n, for n ≥
√
R.

Hence, we only need to prove (2.4) for n <
√
R. In addition, without loss of generality, we can

assume R ≥ 4 (say). In order to estimate an, we proceed by integrating in time the hierarchy of
differential inequalities (2.1), and by iterating the resulting integral inequalities, only stopping the
iteration when we reach some am with m ≥ R (not

√
R here!). More precisely, this leads us to the

following truncated Dyson-type expansion,

an(t) ≤
∞∑
k=0

∑
j1,...,jk

1n0,...,nk<R

( k∏
i=1

mi

)
ank(0)

×
(ˆ

0≤tk≤...≤t1≤t
en0(t−t1) . . . enk−1(tk−1−tk)enktkdt1 . . . dtk

)
+

∞∑
k=0

∑
j1,...,jk

1n0,...,nk−1<R≤nk

( k∏
i=1

mi

)
×
(ˆ

0≤tk≤...≤t1≤t
en0(t−t1) . . . enk−1(tk−1−tk)ank(tk) dt1 . . . dtk

)
,

where the sum over j1, . . . , jk runs over {1,−1,−2}, where we set for abbreviation ni := n+
∑i

l=1 jl,
and where we define mi = ni−1 if ji = 1 and mi = n3i−1R

−2 if ji ∈ {−1,−2}. As ni ≤ n + k for
0 ≤ i ≤ k, we find

en0(t−t1) . . . enk−1(tk−1−tk)enktk ≤ e(n+k)t.

Inserting this bound into the above, evaluating the remaining time integrals, and using the a priori
estimate (2.2) in the form ank ≤ Bnk ≤ Bn+k (as nk ≤ n+ k), we obtain

an(t) ≤ ent
∞∑
k=0

tkekt

k!

∑
j1,...,jk

1n0,...,nk<R

( k∏
i=1

mi

)
ank(0)

+ entBn
∞∑
k=0

(Bt)kekt

k!

∑
j1,...,jk

1n0,...,nk−1<R≤nk

( k∏
i=1

mi

)
. (2.5)

We start by examining the second term, which is easier to control. Provided n0, . . . , nk−1 < R, the
definition of mi yields mi < ni−1 ≤ n+ k for all i, hence

k∏
i=1

mi ≤ (n+ k)k = kk(1 + n
k )k ≤ k!Cn+k. (2.6)

For n <
√
R, recalling the choice R ≥ 4, the condition n+ k ≥ nk ≥ R implies

k ≥ R− n ≥
√
R(
√
R− 1) ≥ 1

2R.

Using this observation and (2.6), the second term in (2.5) can be bounded as follows, provided n <
√
R

and CBtet ≤ e−1,
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entBn
∞∑
k=0

(Bt)kekt

k!

∑
j1,...,jk

1n0,...,nk−1<R≤nk

( k∏
i=1

mi

)
≤ ent(CB)n

∞∑
k=0

(CBtet)k1k≥ 1
2
R ≤ ent(CB)ne−

1
2
R ≤ ent(CBn)nR−n, (2.7)

where in the last inequality we have used the bound e−a ≤ n!a−n ≤ (Cna−1)n for a ≥ 0. It remains
to estimate the first term in (2.5), for which we distinguish between three cases.

Case 1: nk ≤ n.
In this case, we can find i0 ∈ {0, . . . , k} such that ni0 = n and ni ≤ n for all i0 < i ≤ k. Provided
n0, . . . , nk < R, recalling that mi < ni−1 ≤ n + k for all i, noting that mi ≤ n3R−2 for i0 < i ≤ k
if ji ∈ {−1,−2}, and noting that there must be at least 1

2(n − nk) steps with ji ∈ {−1,−2} for
i0 < i ≤ k, we can bound

i0∏
i=1

mi ≤ (n+ k)i0 ,
k∏

i=i0+1

mi ≤ (n3R−2)
1
2
(n−nk)nk−i0−

1
2
(n−nk) = (nR−1)n−nk nk−i0 ,

hence, using again (n+ k)k ≤ k!Cn+k, cf. (2.6),
k∏
i=1

mi ≤ (n+ k)k(nR−1)n−nk ≤ k!Cn+k(nR−1)n−nk .

Let us now use this to estimate the first right-hand side term in (2.5) in the case nk ≤ n. Using the
initial assumption in form of

ank(0) ≤ (nk)
2nk(AR−1)nk ≤ nnAn(nR−1)nk ,

we get for Ctet ≤ e−1,

ent
∞∑
k=0

tkekt

k!

∑
j1,...,jk

1n0,...,nk<R 1nk≤n

( k∏
i=1

mi

)
ank(0)

≤ ent(Cn2)n(AR−1)n
∞∑
k=0

(Ctet)k ≤ ent(Cn2)n(AR−1)n.

Case 2: n < nk ≤
√
A−1R.

Using (2.6) again, for the first right-hand side term in (2.5) restricted to the present case, we find

ent
∞∑
k=0

tkekt

k!

∑
j1,...,jk

1n0,...,nk<R 1
n<nk≤

√
A−1R

( k∏
i=1

mi

)
ank(0)

≤ Cnent
∞∑
k=0

(Ctet)k
∑

j1,...,jk

1
n<nk≤

√
A−1R

ank(0). (2.8)

Using the initial assumption in form of

ank(0) ≤ (nk)
2nk(AR−1)nk = n2n

(
nk
n

)2n
(n2kAR

−1)nk−n(AR−1)n,

and noting that the bound nk ≤ n+ k entails(
nk
n

)2n ≤ (1 + k
n)2n ≤ e2k,

we obtain, for n < nk ≤
√
A−1R,

ank(0) ≤ Ckn2n(AR−1)n.

Inserting this into (2.8), we thus get for Ctet ≤ e−1,
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ent
∞∑
k=0

tkekt

k!

∑
j1,...,jk

1n0,...,nk<R 1
n<nk≤

√
A−1R

( k∏
i=1

mi

)
ank(0)

≤ ent(Cn2)n(AR−1)n
∞∑
k=0

(Ctet)k ≤ ent(Cn2)n(AR−1)n.

Case 3: nk >
√
A−1R.

Using (2.6) again, as well as the a priori bounds (2.2) at t = 0 in form of ank(0) ≤ Bnk ≤ Bn+k

(as nk ≤ n+ k), we get

ent
∞∑
k=0

tkekt

k!

∑
j1,...,jk

1n0,...,nk<R 1
nk>
√
A−1R

( k∏
i=1

mi

)
ank(0)

≤ ent(CB)n
∞∑
k=0

(CBtet)k
∑

j1,...,jk

1
nk>
√
A−1R

. (2.9)

In order to estimate the last sum, we distinguish between two further cases, depending on the size of n.
If n ≤ 1

2

√
A−1R, the condition n+k ≥ nk >

√
A−1R implies k > 1

2

√
A−1R, and thus for CBtet ≤ e−1,

1
n≤ 1

2

√
A−1R

ent
∞∑
k=0

tkekt

k!

∑
j1,...,jk

1n0,...,nk<R 1
nk>
√
A−1R

( k∏
i=1

mi

)
ank(0)

≤ ent(CB)n
∑

k> 1
2

√
A−1R

(CBtet)k ≤ ent(CB)ne−
1
2

√
A−1R ≤ ent(CBn2)n(AR−1)n. (2.10)

If instead n > 1
2

√
A−1R, we can bound for CBtet ≤ e−1,

1
n> 1

2

√
A−1R

ent
∞∑
k=0

tkekt

k!

∑
j1,...,jk

1n0,...,nk<R 1
nk>
√
A−1R

( k∏
i=1

mi

)
ank(0)

≤ 1
n> 1

2

√
A−1R

ent(CB)n
∞∑
k=0

(CBtet)k ≤ 1
n> 1

2

√
A−1R

ent(CB)n ≤ ent(CBn2)n(AR−1)n. (2.11)

Combining the above different cases to estimate the first right-hand side term in (2.5), and combining
with the bound (2.7) on the second term, the conclusion (2.4) follows for n <

√
R. �

3. New framework for correlation estimates

3.1. Linear correlations. The key of our argument for correlation estimates is to start by con-
sidering the following linear correlations, which are obtained by linearizing the correlation func-
tions {GN,m}1≤m≤N around the mean-field approximation f⊗N , where we recall that f stands for
the mean-field solution (1.5). More precisely, we define

HN,0 = 1, HN,1 = FN,1 − f, HN,2 = FN,2 − FN,1 ⊗ f − f ⊗ FN,1 + f ⊗ f,
and more generally, for all 0 ≤ m ≤ N ,

HN,m :=

m∑
k=0

(−1)m−k
∑
σ∈Pmk

FN,k(zσ)f⊗m−k(z[m]\σ), (3.1)

where Pmk stands for the set of all subsets of [m] with k elements. These quantities allow to reconstruct
marginals via the following linear cluster expansion (compare to (1.6)),

FN,m =
m∑
k=0

∑
σ∈Pmk

HN,k(zσ)f⊗m−k(z[m]\σ), 1 ≤ m ≤ N. (3.2)
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Remark 3.1. The above linear correlations are formally similar to the dual correlations studied in [5],
and indeed we have the following duality relation: denoting by {CN,m}m the dual correlations associ-
ated to a dual Liouville solution ΦN as defined in [5, Section 2], there holds

N∑
m=0

(
N

m

) ˆ
Xm

CN,m(t)Hn,m(t) =

N∑
m=0

(
N

m

) ˆ
Xm

CN,m(0)Hn,m(0).

Also note that the definition of linear correlations yields for any ϕ ∈ C∞c (X),ˆ
Xm

ϕ⊗mHN,m =

ˆ
Xm

(
ϕ−
ˆ
X
ϕf
)⊗m

FN,m,

thus drawing the link to moments of µN − f as studied e.g. in [2]. Finally, we can compare the above
linear correlations to those considered close to equilibrium in [3, 9, 8], except that linearization is taken
here at the mean-field approximation f⊗N away from equilibrium.

3.2. BBGKY hierarchies. Recall the standard BBGKY hierarchy of equations satisfied by marginals
{FN,m}1≤m≤N , which is easily obtained by integrating the Liouville equation (1.2): for 1 ≤ m ≤ N ,

∂tFN,m +
m∑
i=1

vi · ∇xiFN,m −
m∑
i=1

4viFN,m

= − 1

N

m∑
i 6=j

K(xi, xj) · ∇viFN,m −
N −m
N

m∑
i=1

ˆ
X
K(xi, x∗) · ∇viFN,m+1(·, z∗) dz∗, (3.3)

where we set FN,m ≡ 0 for m > N . From this, we can deduce a corresponding hierarchy of equations
for linear correlations {HN,m}1≤m≤N . As we shall see, this hierarchy is much more tractable than the
hierarchy for nonlinear correlations {GN,m}1≤m≤N (see Lemma 3.7 below): in particular, it will allow
us to obtain estimates for merely L2 interaction forces, which seems impossible from the hierarchy for
nonlinear correlations.

Lemma 3.2 (Hierarchy for linear correlations). The above-defined linear correlations {HN,m}m satisfy
for all 0 ≤ m ≤ N ,

∂tHN,m + LN,mHN,m =
1

N

m∑
i 6=j

f(zj)

ˆ
X
K(xi, x∗) · ∇viHN,m(z[m]\{j}, z∗) dz∗

− N −m
N

m∑
i=1

(∇vf)(zi) ·
ˆ
X
K(xi, x∗)HN,m(z[m]\{i}, z∗) dz∗

− 1

N

m∑
i 6=j

f(zj)(∇vf)(zi) ·
(
K(xi, xj)− (K ∗ f)(xi)

)
HN,m−2(z[m]\{i,j})

− 1

N

m∑
i 6=j

f(zj)
(
K(xi, xj)− (K ∗ f)(xi)

)
· ∇viHN,m−1(z[m]\{j})

− 1

N

m∑
i 6=j

(∇vf)(zi) ·K(xi, xj)HN,m−1(z[m]\{i}) +
m

N

m∑
i=1

(∇vf)(zi) · (K ∗ f)(xi)HN,m−1(z[m]\{i})

+
1

N

m∑
i 6=j

f(zj)(∇f)(zi) ·
ˆ
X
K(xi, x∗)HN,m−1(z[m]\{i,j}, z∗) dz∗

− N −m
N

m∑
i=1

ˆ
X
K(xi, x∗) · ∇viHN,m+1(z[m], z∗) dz∗,
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where we set HN,m ≡ 0 for m > N or m < 0, and where we have defined for abbreviation

LN,m :=
m∑
i=1

vi · ∇xi −
m∑
i=1

4vi +
N −m
N

m∑
i=1

K ∗ f(xi) · ∇vi +
1

N

m∑
i 6=j

K(xi, xj) · ∇vi . (3.4)

Moreover, chaotic initial data (1.3) yield HN,m|t=0 = 0 for all 1 ≤ m ≤ N .

Proof. Starting point is the BBGKY hierarchy (3.3) for marginals {FN,m}1≤m≤N . By definition
of HN,m, the BBGKY equation for FN,m and the mean-field equation (1.5) for f lead to

∂tHN,m +
m∑
i=1

vi · ∇xiHN,m −
m∑
i=1

4viHN,m

= − 1

N

m∑
k=0

(−1)m−k
∑
σ∈Pmk

f⊗m−k(z[m]\σ)
∑
i,j∈σ
i 6=j

K(xi, xj) · ∇viFN,k(zσ)

−
m∑
k=0

(−1)m−k
∑
σ∈Pmk

f⊗m−k(z[m]\σ)
N − k
N

∑
i∈σ

ˆ
X
K(xi, x∗) · ∇viFN,k+1(zσ, z∗) dz∗

−
m∑
k=0

(−1)m−k
∑
σ∈Pmk

∑
i/∈σ

FN,k(zσ)K ∗ f(zi) · ∇vif⊗m−k(z[m]\σ). (3.5)

It remains to reformulate the right-hand side in terms of linear correlations. We start with the first
right-hand side term. Using the cluster expansion (3.2) to write marginals in terms of linear correla-
tions, and reorganizing the sums, we get

− 1

N

m∑
k=0

(−1)m−k
∑
σ∈Pmk

f⊗m−k(z[m]\σ)
∑
i,j∈σ
i 6=j

K(xi, xj) · ∇viFN,k(zσ)

= − 1

N

m∑
k=0

(−1)m−k
∑
σ∈Pmk

∑
i,j∈σ
i6=j

k∑
l=0

∑
τ∈Pσl

K(xi, xj) · ∇vi
(
f⊗m−l(z[m]\τ )HN,l(zτ )

)

= − 1

N

m∑
l=0

∑
τ∈Pml

∑
i,j∈τ
i 6=j

f⊗m−l(z[m]\τ )K(xi, xj) · ∇viHN,l(zτ )
m∑
k=l

(−1)m−k
(
m− l
k − l

)

− 1

N

m∑
l=0

∑
τ∈Pml

∑
i∈τ

∑
j /∈τ

f⊗m−l(z[m]\τ )K(xi, xj) · ∇viHN,l(zτ )

m∑
k=l

(−1)m−k
(
m− l − 1

k − l − 1

)

− 1

N

m∑
l=0

∑
τ∈Pml

∑
i/∈τ

∑
j∈τ

HN,l(zτ )K(xi, xj) · ∇vif⊗m−l(z[m]\τ )

m∑
k=l

(−1)m−k
(
m− l − 1

k − l − 1

)

− 1

N

m∑
l=0

∑
τ∈Pml

∑
i,j /∈τ
i 6=j

HN,l(zτ )K(xi, xj) · ∇vif⊗m−l(z[m]\τ )
m∑
k=l

(−1)m−k
(
m− l − 2

k − l − 2

)
,

hence, using the combinatorial identity
∑n

k=0(−1)n−k
(
n
k

)
= 1n=0,

− 1

N

m∑
k=0

(−1)m−k
∑
σ∈Pmk

f⊗m−k(z[m]\σ)
∑
i,j∈σ
i6=j

K(xi, xj) · ∇viFN,k(zσ)
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= − 1

N

m∑
i 6=j

K(xi, xj) · ∇viHN,m −
1

N

∑
τ∈Pmm−1

m∑
i 6=j

f(zj)K(xi, xj) · ∇viHN,m−1(z[m]\{j})

− 1

N

m∑
i 6=j

HN,m−1(z[m]\i)K(xi, xj) · ∇vf(zi)−
1

N

m∑
i 6=j

HN,l(z[m]\{i,j})K(xi, xj) · ∇vf(zi)f(zj).

Arguing similarly to rewrite the last two terms in (3.5), the conclusion follows. We skip the details for
shortness. �

3.3. Estimates on linear correlations. A direct analysis of the above hierarchy leads to the follow-
ing short-time optimal estimates on linear correlations. To deal with the case of an interaction kernel
K ∈ L2 deriving from a potential with exponential integrability, we take inspiration from the BBGKY
hierarchical estimates in [4] using suitable time-dependent Gibbs-type weights. Note that particular
care is needed here to ensure the existence of a fixed time interval on which linear correlation estimates
hold to all orders: for this purpose, we shall appeal to Lemma 2.1.

Proposition 3.3. In the setting of Theorem 1.1, there is a time T∗ ∈ (0, T0] and some β∗ > 0 such
that we have for all 0 ≤ m ≤ N and t ∈ [0, T∗],(ˆ

Xm
|HN,m(t)|2ω⊗mβ∗

) 1
2 ≤ (Cm2)mN−

m
2 .

Proof. Following [4], given β > 0 to be suitably chosen later on, we consider the following time-
dependent Gibbs-type weights, for all 1 ≤ m ≤ N and t ≥ 0,

ωN,m(t; z1, . . . , zm) := exp

[
β

1 + 4βt

(
1

2

m∑
i=1

|vi|2 +
N −m
N

m∑
i=1

(W ∗ f)(t, xi) +
1

2N

m∑
i 6=j

W (xi − xj)
)]
.

These weights are adapted to the linear operators LN,m’s driving the correlation dynamics in the
hierarchy derived in Lemma 3.2: indeed, by multiple integrations by parts, we obtain the following
inequality for the resulting weighted dissipation, for all 1 ≤ m ≤ N , hm ∈ C∞c (R+ × Xm), and t ≥ 0,

2

ˆ
Xm

hm(LN,mhm)ωN,m −
ˆ
Xm
|hm|2∂tωN,m

≥ 2
m∑
i=1

ˆ
Xm
|∇vihm|2ωN,m +

β2

(1 + 4βt)2

m∑
i=1

ˆ
Xm
|vi|2|hm|2ωN,m

− mβ

1 + 4βt

(
d+ ‖∂t(W ∗ f)‖L∞ +

6β‖W−‖L∞
1 + 4βt

)ˆ
Xm
|hm|2ωN,m. (3.6)

Consider the corresponding weighted L2 norms of linear correlations, for 1 ≤ m ≤ N ,

AN,m :=

ˆ
Xm
|HN,m|2ωN,m.

Performing an energy estimate for the hierarchy derived in Lemma 3.2, using the above dissipation
inequality (3.6), and integrating by parts, we get for all t ∈ [0, T0],

∂tAN,m ≤ −2

m∑
i=1

ˆ
Xm
|∇viHN,m|2ωN,m −

β2

(1 + 4βt)2

m∑
i=1

ˆ
Xm
|vi|2|HN,m|2ωN,m

+
mβ

1 + 4βt

(
d+ ‖∂t(W ∗ f)‖L∞ +

6β‖W−‖L∞
1 + 4βt

)
AN,m

+
2

N

m∑
i 6=j

ˆ
Xm+1

f(zj)HN,[m+1]\{j}ωN,[m]K(xi − xm+1) ·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m]
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+ 2
N −m
N

m∑
i=1

ˆ
Xm+1

f(zi)HN,[m+1]\{i}ωN,[m]K(xi − xm+1) ·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m]

+
1

N

m∑
i 6=j

ˆ
Xm

f(zi)f(zj)HN,[m]\{i,j}ωN,[m]

(
K(xi − xj)− (K ∗ f)(xi)

)
·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m]

+
1

N

m∑
i 6=j

ˆ
Xm

f(zj)HN,[m]\{j}ωN,[m]

(
K(xi − xj)− (K ∗ f)(xi)

)
·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m]

+
1

N

m∑
i 6=j

ˆ
Xm

f(zi)HN,[m]\{i}ωN,[m]K(xi − xj) ·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m]

− m

N

m∑
i=1

ˆ
Xm

f(zi)HN,[m]\{i}ωN,[m](K ∗ f)(xi) ·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m]

− 1

N

m∑
i 6=j

ˆ
Xm+1

f(zi)f(zj)ωN,[m]HN,[m+1]\{i,j}K(xi − xm+1) ·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m]

+
N −m
N

m∑
i=1

ˆ
Xm+1

HN,[m+1]ωN,[m]K(xi − xm+1) ·
(
∇vi +

β

1 + 4βt
vi

)
HN,[m],

with the short-hand notation

HN,A := HN,]A(zA), ωN,A := ωN,]A(zA).

Using Young’s inequality to absorb factors involving ∇vHN,m or vHN,m into the dissipation terms, we
obtain

∂tAN,m . m
(

1 + ‖∂t(W ∗ f)‖L∞ + ‖W−‖L∞
)
AN,m

+
m3

N2

ˆ
Xm

∣∣∣ ˆ
X
HN,[m+1]\{1}K(x2 − xm+1) dzm+1

∣∣∣2f(z1)
2ωN,[m] dz[m]

+m

ˆ
Xm

∣∣∣ ˆ
X
HN,[m+1]\{1}K(x1 − xm+1) dzm+1

∣∣∣2f(z1)
2ωN,[m] dz[m]

+
m3

N2

ˆ
Xm
|HN,[m]\{1,2}|2

(
|K(x1 − x2)|2 + |(K ∗ f)(x1)|2

)
f(z1)

2f(z2)
2ωN,[m] dz[m]

+
m3

N2

ˆ
Xm
|HN,[m]\{2}|2

(
|K(x1 − x2)|2 + |(K ∗ f)(x1)|2

)
f(z2)

2ωN,[m] dz[m]

+
m3

N2

ˆ
Xm
|HN,[m]\{1}|2

(
|K(x1 − x2)|2 + |(K ∗ f)(x1)|2

)
f(z1)

2ωN,[m] dz[m]

+
m3

N2

ˆ
Xm

∣∣∣ ˆ
X
HN,[m+1]\{1,2}K(x1 − xm+1) dzm+1

∣∣∣2f(z1)
2f(z2)

2ωN,[m] dz[m]

+m

ˆ
Xm

∣∣∣ˆ
X
HN,[m+1]K(xi − xm+1) dzm+1

∣∣∣2ωN,[m]dz[m].

In order to bound the right-hand side in terms of the AN,m’s themselves, we need to add or remove
variables in the weights. More precisely, using estimates such as

ωN,[m] ≤ ωN,[m+1]\{1} e
3β‖W−‖L∞eβ‖W∗f‖L∞

× exp
[
− β

2(1 + 4βt)
|vm+1|2

]
exp

[β
2
|v1|2

]
exp

[ β
N

m∑
i=2

W (x1 − xi)
]
,
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we are easily led to the following: for all 0 ≤ m ≤ N and t ∈ [0, T0],{
∂tAN,m ≤ CmAN,m + CmAN,m+1 + Cm3

N2 (AN,m−1 +AN,m−2),
AN,m|t=0 = 1m=0,

(3.7)

where the constant C only depends on T0, β, and on

‖W−‖L∞ , ‖K‖L2 , sup
y∈Td

ˆ
Td
e2βW (x−y)|K(x)|2 dx,

‖W ∗ f‖L∞(0,T0;W 1,∞), ‖∂t(W ∗ f)‖L∞(0,T0;L∞), sup
t∈[0,T0],x∈Td

ˆ
Rd
|f(t;x, v)|2e

β
2
|v|2dv.

For a suitable choice of β = β∗ > 0, these quantities are all ensured to be finite by assumption. We
turn to the analysis of the hierarchy (3.7) of differential inequalities. First, bounding m3

N2 ≤ m, we get
for all 0 ≤ m ≤ N and t ∈ [0, T0],{

∂tAN,m ≤ Cm(AN,m−2 +AN,m−1 +AN,m +AN,m+1),
AN,m|t=0 = 1m=0,

In terms of the generating function

Z(t, r) =
N∑
m=0

rmAN,m(t), t ∈ [0, T0], 0 ≤ r < 1,

we get
∂tZ(t, r) ≤ C∂rZ(t, r), Z(0, r) = 1.

Solving this differential inequality yields for all 0 ≤ r < 1 and 0 ≤ t ≤ (C−1r) ∧ T0,
Z(t, r − Ct) ≤ Z(0, r) = 1,

which implies for all 0 ≤ m ≤ N and t ∈ [0, T∗], with T∗ := (2C)−1 ∧ T0,
AN,m(t) ≤ 2m.

Next, taking advantage of this exponential a priori control, we can now go back to the differential
inequality (3.7) and apply the hierarchical estimate of Lemma 2.1: we conclude for all 1 ≤ m ≤ N
and t ∈ [0, T∗],

AN,m(t) ≤ (Cm2)mN−m. �

3.4. Nonlinear correlations. We turn to the study of the usual (nonlinear) correlation functions
{GN,m}1≤m≤N defined in (1.7). We start by unraveling their link to linear correlations. In a nutshell,
the following lemma shows that linear correlations satisfy the same cluster expansion in terms of
nonlinear correlations as marginals do, cf. (1.6), up to replacing GN,1 = FN,1 by FN,1 − f .

Lemma 3.4. For all 1 ≤ m ≤ N ,

HN,m =
∑
π`[m]

∏
B∈π

G̃N,]B(zB).

where we have set G̃N,m := GN,m for m > 1 and G̃N,1 := FN,1 − f .

Proof. Recalling the definition of HN,m and inserting cluster expansions for marginals in terms of
nonlinear correlations, cf. (1.6), we find

HN,m =

m∑
k=0

(−1)m−k
∑
σ∈Pmk

FN,k(zσ)f⊗m−k(z[m]\σ)

=

m∑
k=0

(−1)m−k
∑
σ∈Pmk

∑
π`σ

∏
B∈π

GN,]B(zB)f⊗m−k(z[m]\σ),

and the conclusion follows after a straightforward recombination. �
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From the above lemma, we find that Proposition 3.3 implies the following estimates on nonlinear
correlations, thus proving the first part (1.9) of Theorem 1.1.

Corollary 3.5. In the setting of Theorem 1.1, there is a time T∗ ∈ (0, T0] and some β∗ > 0 such that
we have for all 2 ≤ m ≤ N and t ∈ [0, T∗],(ˆ

X
|(FN,1 − f)(t)|2ωβ∗

) 1
2 ≤ CN−

1
2 ,( ˆ

Xm
|GN,m(t)|2ω⊗mβ∗

) 1
2 ≤ (Cm2)mN−

m
2 .

Proof. Using the same notation as in Lemma 3.4, we need to show for all 1 ≤ m ≤ N and t ∈ [0, T∗],(ˆ
Xm
|G̃N,m(t)|2ω⊗mβ∗

) 1
2 ≤ (Cm2)mN−

m
2 .

We argue by induction. For m = 1, we have G̃N,1 = FN,1−f = HN,1, so the conclusion already follows
from Proposition 3.3. Next, we assume that for some n ≥ 1 the result is already known to hold for all
1 ≤ m ≤ n. Appealing to the previous lemma in form of

G̃N,n+1 = HN,n+1 −
∑

π`[n+1]
]π>1

∏
B∈π

G̃N,]B(zB),

we can estimate(ˆ
Xn+1

|G̃N,n+1|2ω⊗n+1
β∗

) 1
2 ≤

(ˆ
Xn+1

|HN,n+1|2ω⊗n+1
β∗

) 1
2

+
∑

π`[n+1]
]π>1

∏
B∈π

(ˆ
X]B
|G̃N,]B|2ω⊗]Bβ∗

) 1
2
.

and the conclusion follows from Proposition 3.3 for HN,n+1 and the induction assumption. �

3.5. Weak limit of subcritically rescaled correlations. In this section, we turn to the proof of
the second part (1.10) of Theorem 1.1, that is, for all m ≥ 3,

N
m
2 GN,m

∗
⇀ 0, in L∞(0, T∗;L

2(ω⊗mβ∗ )).

For that purpose, we examine the hierarchy of equations satisfied by nonlinear correlations, and we
pass to the limit in this hierarchy. We emphasize that this is only possible because we already have
the subcritical bounds (1.9) on the GN,m’s. In that regard, the detour through the HN,m’s and their
hierarchy is key to our approach.

Before we formulate the hierarchy of equations satisfied by nonlinear correlations, we start with
some useful notation.

Definition 3.6. Consider a collection {hm}1≤m≤N of functions hm : Xm → R such that for all m the
function hm is symmetric in its m entries (such as {GN,m}1≤m≤N ).
— For P ⊂ [m] with P 6= ∅, we define hP := h]P (zP ), and for P = ∅ we set h∅ := 0 (as hm is

undefined for m < 1). For P ⊂ [m] with P 6= [N ], we define hP∪{∗} := h]P+1(zP , z∗), and for
P = [N ] we set h[N ]∪{∗} = 0 (as hm is undefined for m > N).

— For P ⊂ [m] and k, ` ∈ P , we define

Sk,`hP := −K(xk − x`) · ∇vkhP .

— For P ⊂ [m] and k ∈ P , we define

HkhP∪{∗} := −
ˆ
X
K(xk − x∗) · ∇vkhP∪{∗} dz∗.
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We may now formulate the BBGKY hierarchy for nonlinear correlations. The derivation follows
similarly as in the proof of Lemma 3.2, and we refer to [11, Section 4] for the corresponding derivation
in case of the overdamped dynamics; we skip the details for shortness. For convenience, we write
A−B = A\B for set difference, with for instance A−B−C = A\(B∪C) and A∪B−C = (A∪B)\C.
Due to terms involving Sk,`, we emphasize that this hierarchy cannot be used to obtain estimates
unless K ∈ L∞; see Section 6.

Lemma 3.7 (Hierarchy for nonlinear correlations). For fixed N , correlation functions {GN,m}1≤m≤N
satisfy the following hierarchy of equations: for all 1 ≤ m ≤ N ,

∂tGN,m+LN,mGN,m = −N −m
N

m∑
i=1

(∇vf)(zi) ·
ˆ
X
K(xi − x∗)GN,m(z[m]\{i}, z∗) dz∗

+
N −m
N

m∑
k=1

HkGN,[m]∪{∗} −
m∑
k=1

∑
A⊂[m]−{k}

m− 1− ]A
N

Hk

(
GN,A∪{k,∗}GN,[m]−{k}−A

)
+
N −m
N

m∑
k=1

∑
A([m]−{k}

A6=∅

Hk

(
GN,A∪{k}GN,[m]∪{∗}−A−{k}

)

−
m∑
k=1

∑
A⊂[m]−{k}

∑
B⊂[m]−{k}−A

m− 1− ]A− ]B
N

Hk

(
GN,A∪{k}GN,B∪{∗}GN,[m]−A−B−{k}

)
+

1

N

m∑
k 6=`

∑
A⊂[m]−{k,`}

Sk,`
(
GN,A∪{k}GN,[m]−A−{k}

)
+
N −m
N

m∑
k=1

Hk

(
(FN,{∗} − f(z∗))GN,[m] + (FN,{k} − f(zk))GN,[m]∪{∗}−{k}

)
,

where we recall that LN,m is defined in (3.4).

With this hierarchy at hand, we can now conclude the proof of (1.10). By Corollary 3.5, we obtain
the following by weak compactness: up to a subsequence as N ↑ ∞, for all m ≥ 2,

N
m
2 GN,m

∗
⇀ Ḡm, in L∞(0, T∗;L

2(ω⊗mβ∗ )), (3.8)

for some limit {Ḡm}m≥2. Also note that Corollary 3.5 yields, for m = 1,

FN,1 → f, in L∞(0, T∗;L
2(ωβ∗)).

Now passing to the weak limit in the hierarchy of Lemma 3.7, which is allowed for K ∈ L2, we find

∂tḠm +
m∑
i=1

vi · ∇xiḠm −
m∑
i=1

4viḠm +
m∑
i=1

(K ∗ f)(zi) · ∇viḠm

+
m∑
i=1

(∇vf)(zi) ·
ˆ
X
K(xi − x∗)Ḡm(z[m]\{i}, z∗) dz∗

= −1m=2

2∑
k 6=`

(
K(xk − x`)− (K ∗ f)(xk)

)
· (∇vf)(zk)f(z`), (3.9)

with Ḡm|t=0 = 0 for m ≥ 2. This implies Ḡm ≡ 0 for all m ≥ 3 and concludes the proof of (1.10).

Remark 3.8. For comparison, considering weak limits of rescaled linear correlations,

N
m
2 HN,m

∗
⇀ H̄m, in L∞(0, T∗;L

2(ω⊗mβ∗ )),

and passing to the limit in the corresponding linear hierarchy in Lemma 3.2, we find for all m ≥ 1,
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∂tH̄m +
m∑
i=1

vi · ∇xiH̄m −
m∑
i=1

4viH̄m +
m∑
i=1

(K ∗ f)(xi) · ∇viH̄m

+
m∑
i=1

(∇vf)(zi) ·
ˆ
X
K(xi − x∗)H̄m(z[m]\{i}, z∗) dz∗

= −
m∑
i 6=j

f(zj)(∇vf)(zi) ·
(
K(xi − xj)− (K ∗ f)(xi)

)
H̄m−2(z[m]\{i,j}),

with initially H̄m|t=0 = 0 for all m ≥ 1. This immediately implies H̄m ≡ 0 for m odd, while terms
of even order satisfy a nontrivial hierarchy. In fact, the latter implies relations of the form H̄4 =
3 sym(H̄2⊗H̄2), and so on, which are equivalent to the vanishing of limit nonlinear correlations {Ḡm}m.

4. Bogolyubov correction

This section is devoted to the proof of Corollary 1.3, which we split into four steps.

Step 1: Proof that for all 1 ≤ m ≤ N and t ∈ [0, T∗],

‖FN,m − f⊗m‖L2(ω⊗mβ∗ ) ≤ CmN
−1. (4.1)

Note that for m = 1 a suboptimal rate O(N−1/2) was obtained in Corollary 3.5, which we now
improve. The starting point is the BBGKY hierarchy (3.3) for marginals. Comparing it to the mean-
field equation for f , we find

∂t(FN,m − f⊗m) +

m∑
i=1

vi · ∇xi(FN,m − f⊗m)−
m∑
i=1

4vi(FN,m − f⊗m)

+
1

N

m∑
i 6=j

K(xi − xj) · ∇vi(FN,m − f⊗m)

= −N −m
N

m∑
i=1

ˆ
X
K(xi − x∗) · ∇vi(FN,m+1 − f⊗m+1)(·, z∗) dz∗

− 1

N

m∑
i,j=1

(
K(xi − xj)1i 6=j −K ∗ f(xi)

)
· ∇vif⊗m. (4.2)

Similarly as in the proof of Proposition 3.3, we perform L2 estimates with suitable time-dependent
weights. More precisely, we now define for all 1 ≤ m ≤ N and t ≥ 0,

ω′N,m(t; z[m]) = exp

[
β

1 + 4βt

(
1

2

m∑
i=1

|vi|2 +
1

2N

m∑
i 6=j

W (xi − xj)
)]
.

Performing a weighted energy estimate for the above hierarchy (4.2), with these weights, we find

∂t

ˆ
Xm
|FN,m − f⊗m|2ω′N,m

≤ −2

ˆ
Xm

m∑
i=1

|∇vi(FN,m − f⊗m)|2ω′N,m −
β2

(1 + 4βt)2

m∑
i=1

ˆ
Xm
|vi|2|FN,m − f⊗m|2ω′N,m

+
mβ

1 + 4βt

(
d+

2β‖W−‖L∞
1 + 4βt)

)ˆ
Xm
|FN,m − f⊗m|2ω′N,m

+ 2
N −m
N

m∑
i=1

ˆ
Xm+1

ω′N,m(z[m])(FN,m+1 − f⊗m+1)(z[m+1])K(xi − xm+1)
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·
(
∇vi +

β

1 + 4βt
vi

)
(FN,m − f⊗m)(z[m]) dz[m+1]

− 2

N

m∑
i,j=1

ˆ
Xm

ω′N,mf
⊗m(K(xi − xj)1i 6=j −K ∗ f(xi)

)
·
(
∇vi +

β

1 + 4βt
vi

)
(FN,m − f⊗m).

By Young’s inequality, using the dissipation, we deduce

∂t

ˆ
Xm
|FN,m − f⊗m|2ω′N,m . m

ˆ
Xm
|FN,m − f⊗m|2ω′N,m

+m

ˆ
Xm

∣∣∣ˆ
X

(FN,m+1 − f⊗m+1)(z[m+1])K(x1 − xm+1) dzm+1

∣∣∣2ω′N,m(z[m]) dz[m]

+
m3

N2

ˆ
Xm

(
|K(x1 − x2)|2 + |K ∗ f(x1)|2

)
|f⊗m|2ω′N,m.

Changing the weight in the second term,

ω′N,m . ω′N,m+1 exp
[
− β

2(1 + 4βt)
|vm+1|2

]
,

and recalling the assumptions on K, f , for a suitable choice of β = β∗ > 0, we are led to

∂t

ˆ
Xm
|FN,m − f⊗m|2ω′N,m

. m

ˆ
Xm
|FN,m − f⊗m|2ω′N,m +m

ˆ
Xm+1

|FN,m+1 − f⊗m+1|2ω′N,m+1 +
m3

N2
.

In terms of the generating function

Z(t, r) =

N∑
m=1

rm
( ˆ

Xm
|FN,m − f⊗m|2ω′N,m +

m2

N2

)
, t ∈ [0, T0], 0 ≤ r < 1,

the above yields
∂tZ(t, r) ≤ C∂rZ(t, r), Z(0, r) . (1− r)−3N−2.

Solving this differential inequality, the claim (4.1) follows.

Step 2: Proof that
NGN,2

∗
⇀ Ḡ2, in L∞(0, T∗;L

2(ω⊗2β∗ )), (4.3)

where Ḡ2 satisfies

∂tḠ2 +
2∑
i=1

vi · ∇xiḠ2 −
2∑
i=1

4viḠ2 +
2∑
i=1

(K ∗ f)(zi) · ∇viḠ2

+
2∑
i=1

(∇vf)(zi) ·
ˆ
X
K(xi − x∗)Ḡ2(z[2]\{i}, z∗) dz∗

= −
2∑
k 6=`

(
K(xk − x`)− (K ∗ f)(xk)

)
· (∇vf)(zk)f(z`), (4.4)

with Ḡ2|t=0 = 0. In the previous section, cf. (3.8)–(3.9) for m = 2, we already showed that the
convergence (4.3) holds up to a subsequence as N ↑ ∞ and that any weak limit satisfies the above
equation (4.4). As the latter is easily checked to be well-posed in L2(ω⊗2β∗ ) under the assumptions
on K, f , the conclusion follows.

Step 3: Proof that
N(FN,1 − f)

∗
⇀ h in L∞(0, T∗;L

2(ωβ∗)),
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where h satisfies

∂th+ v · ∇xh = 4vh−
ˆ
X
K(x− x∗) · ∇vḠ2(z, z∗) dz∗

− (K ∗ h) · ∇vf − (K ∗ f) · ∇vh+ (K ∗ f) · ∇vf. (4.5)

By weak compactness, the bounds of Step 1 ensure the following convergence, up to a subsequence
as N ↑ ∞,

N(FN,1 − f)
∗
⇀ h, in L∞(0, T∗;L

2(ωβ∗)),

for some limit h. For m = 1, the BBGKY equation (4.2) for FN,1 − f takes the form

∂t(FN,1 − f) + v · ∇x(FN,1 − f)−4v(FN,1 − f) = −N − 1

N

ˆ
X
K(x− x∗) · ∇vGN,2(z, z∗) dz∗

− N − 1

N
(K ∗ (FN,1 − f)) · ∇vFN,1 −

N − 1

N
(K ∗ f) · ∇v(FN,1 − f) +

1

N
(K ∗ f) · ∇vf.

Multiplying by N , passing to the weak limit, and recalling the strong convergence FN,1 → f in
L∞(0, T∗;L

2(ωβ∗)), cf. Corollary 3.5, as well as the weak convergence (4.3) for correlations, we then
find that any limit point h satisfies the desired equation (4.5). Well-posedness of the latter in L2(ωβ∗)
yields the conclusion.

Step 4: Proof that for all m ≥ 1,

N
(
FN,m − (f + 1

N h)⊗m
)
∗
⇀

∑
1≤k<`≤m

Ḡ2(zk, z`)f
⊗m−2(z[m]\{k,`}), in L∞(0, T∗;L

2(ω⊗mβ∗ )).

Using the cluster expansion (1.6) in form of

FN,m − F⊗mN,1 =
∑
π`[m]
]π<m

∏
B∈π

GN,B,

using bounds on correlations, cf. Corollary 3.5, as well as the weak convergence (4.3), we deduce

N(FN,m − F⊗mN,1 )
∗
⇀

∑
1≤k<`≤m

Ḡ2(zk, z`)f
⊗m−2(z[m]\{k,`}).

Combining this with the result of Step 3, we deduce

N(FN,m − f⊗m) = N(FN,m − F⊗mN,1 ) +N(F⊗mN,1 − f
⊗m)

∗
⇀

∑
1≤k<`≤m

Ḡ2(zk, z`)f
⊗m−2(z[m]\{k,`}) +

m∑
k=1

f⊗k−1 ⊗ h⊗ f⊗m−k,

and the claim follows. �

5. Fluctuations of empirical measure

This section is devoted to the proof of Corollary 1.4. Let ϕ ∈ C∞c (X) be a fixed test function. We
split the proof into two steps.

Step 1: Convergence of the variance.
The variance of the empirical measure can be written as follows in terms of the 2-point correlation
function,

Var

[ˆ
X
ϕµN

]
=
N − 1

N

ˆ
X2

ϕ⊗2GN,2 +
1

N

ˆ
X

(
ϕ−
ˆ
X
ϕFN,1

)2
FN,1.

The convergence results of Corollary 1.3 then lead to the following characterization of the limiting
variance,

σ(ϕ)2 := lim
N↑∞

Var

[
N

1
2

ˆ
X
ϕµN

]
=

ˆ
X2

ϕ⊗2Ḡ2 +

ˆ
X

(
ϕ−
ˆ
X
ϕf
)2
f,
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where we recall that Ḡ2 is the solution of the Bogolyubov equation (1.11). Similarly as e.g. in [1,
Section 5], we can easily check that this limiting variance can be reformulated as σ(ϕ)2 = Var[

´
X ϕν],

where ν is the Gaussian process defined in the statement.

Step 2: CLT by the moment method.
From e.g. [7, Proposition 4.1] (see also [1, Lemma 2.6]), we recall the following link between correlation
functions and cumulants of the empirical measure: for all 1 ≤ m ≤ N ,∣∣∣∣κm[ˆ

X
ϕµN

]∣∣∣∣ .m ∑
π`JmK

∑
ρ`π

N ]π−]ρ−m+1

∣∣∣∣ˆ
X]π

(⊗
B∈π

ϕ]B
)( ∏

D∈ρ
GN,]D(zD)

)
dzπ

∣∣∣∣.
Rescaling in N , counting the powers of N , and appealing to the weak convergence result (1.10) of
Theorem 1.1, we deduce for all m ≥ 3, on [0, T∗],

lim
N↑∞

κm
[
N

1
2

ˆ
X
ϕµN

]
= 0.

By definition of cumulants, combining this with the convergence of the variance in Step 1, we deduce
for all m ≥ 1, on [0, T∗],

lim
N↑∞

E
[(
N

1
2

ˆ
X
ϕ(µN − E[µN ])

)m]
= σ(ϕ)mθm,

where θm stands for the m-th moment of a standard Gaussian variable. As ν is a centered Gaussian
process with σ(ϕ)2 = Var[

´
X ϕν], note that σ(ϕ)mθm = E[(

´
X ϕν)m]. By the moment method, a

sequence of random variables converges in law to a Gaussian if and only if all its moments converge.
This concludes the proof. �

6. Case of bounded forces

In this section, we turn to the proof of Theorem 1.5, explaining how our correlation estimates can
be improved a posteriori in the case K ∈ L∞. We start by adapting Proposition 3.3, showing that
linear correlation estimates now hold globally in time up to some exponential time growth.

Proposition 6.1. In the setting of Theorem 1.5, we have for all 1 ≤ m ≤ N and t ≥ 0,(ˆ
Xm
|HN,m(t)|2ω⊗mβ(t)

) 1
2 ≤ (CeCtm2)mN−

m
2 ,

where we have set β(t) := β
1+4βt , for some constant C only depending on d, β, ‖K‖L∞ , ‖f◦‖L2(ωβ).

Proof. Compared to the proof of Proposition 3.3, as we now assume K ∈ L∞(T2d)d, we can replace
the time-dependent weight ωN,m by the following simpler version,

ωm(t; z[m]) := exp

[
β

2(1 + 4βt)

m∑
i=1

|vi|2
]

= ω⊗mβ(t)(z[m]), (6.1)

and we start by noting that we have global exponential a priori bounds on weighted L2 norms of
marginals. This follows from [4], but we include a short proof for convenience: by a direct computation
starting from the BBGKY equations (3.3) for marginals, we can estimate

∂t

ˆ
Xm
|FN,m|2ωm ≤ −2

m∑
i=1

ˆ
Xm
|∇viFN,m|2ωm −

β2

(1 + 4βt)2

m∑
i=1

ˆ
Xm
|vi|2|FN,m|2ωm

+
βdm

1 + 4βt

ˆ
Xm
|FN,m|2ωm +

β‖K‖L∞
1 + 4βt

m

N

m∑
i=1

ˆ
Xm
|vi||FN,m|2ωm

+ 2
N −m
N

m∑
i=1

ˆ
Xm

ωm

(ˆ
X
FN,m+1(·, z∗)K(xi − x∗) dz∗

)
·
(
∇vi +

β

1 + 4βt
vi

)
FN,m.
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Note that the last term can be bounded by

2
N −m
N

m∑
i=1

ˆ
Xm

ωm

( ˆ
X
FN,m+1(·, z∗)K(xi − x∗) dz∗

)
·
(
∇vi +

β

1 + 4βt
vi

)
FN,m

≤ 2‖K‖L∞
m∑
i=1

ˆ
Xm

ωm

(ˆ
X
FN,m+1(·, z∗) dz∗

)∣∣∣(∇vi +
β

1 + 4βt
vi

)
FN,m

∣∣∣
= 2‖K‖L∞

m∑
i=1

ˆ
Xm

ωmFN,m

∣∣∣(∇vi +
β

1 + 4βt
vi

)
FN,m

∣∣∣.
Further using Young’s inequality and taking advantage of the dissipation, we are led to

∂t

ˆ
Xm
|FN,m|2ωm ≤ Cm

ˆ
Xm
|FN,m|2ωm,

for some constant C only depending on d, β, ‖K‖L∞ . Hence, by Grönwall’s inequality, we deduce for
all 1 ≤ m ≤ N and t ≥ 0, ˆ

Xm
|FN,m(t)|2 ωm ≤

(
eCt
ˆ
X
|f◦|2e

β
2
|v|2
)m

.

Also note that for the mean-field dynamics we have a similar estimate, for all t ≥ 0,ˆ
X
|f(t)|2ω1 ≤ eCt

ˆ
X
|f◦|2e

β
2
|v|2 .

Combining these two bounds and recalling the definition (3.1) of linear correlations, we obtain the
following global exponential a priori estimates, for all 1 ≤ m ≤ N and t ≥ 0,

AN,m :=
(ˆ

Xm
|HN,m|2 ωm

) 1
2 ≤

(
CeCt

ˆ
X
|f◦|2e

β
2
|v|2
)m

2
. (6.2)

Next, repeating the computations towards (3.7) in the proof of Proposition 3.3, we similarly find in
the present setting, for all 1 ≤ m ≤ N and t ≥ 0,{

∂tAN,m ≤ CmAN,m + CmAN,m+1 + Cm3

N2 (AN,m−1 +AN,m−2),
AN,m|t=0 = 1m=0,

for some constant C only depending on d, β, ‖K‖L∞ ,
´
X |f◦|

2e
β
2
|v|2 . Appealing to Lemma 2.1 for this

hierarchy of differential inequalities, together with the exponential a priori bounds (6.2), the conclusion
follows. �

With the above suboptimal estimates at hand, we can now conclude the proof of Theorem 1.5: we use
the hierarchy of equations for nonlinear correlations, cf. Lemma 3.7, and recover the optimal estimates
by a direct induction. We emphasize that for K ∈ L∞ the hierarchy for nonlinear correlations is indeed
perfectly usable, as already exploited in [11]. However, as this is a nonlinear hierarchy, it is not easy to
directly use it to deduce correlation estimates: in our approach, it is critical to start from subcritical
estimates on linear correlations, and only use the nonlinear hierarchy to get improvements.

Proof of Theorem 1.5. Let ωm be the time-dependent weight in (6.1), and set for abbreviation

BN,m :=
( ˆ

Xm
|GN,m|2ωm

) 1
2
, 1 ≤ m ≤ N, t ≥ 0.

Arguing similarly as in the proof of Corollary 3.5, the estimates on linear correlations in Proposition 6.1
allow to deduce the following on nonlinear correlations: for all 1 ≤ m ≤ N and t ≥ 0,

BN,m(t) ≤ (CeCtm2)m(N−
m
2 + 1m=1), (6.3)

where henceforth multiplicative constants only depend on d, β, ‖K‖L∞ , and
´
X |f◦|

2e
β
2
|v|2 . In order

to improve on these subcritical estimates, we now appeal to the hierarchy of equations for nonlinear
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correlations, cf. Lemma 3.7. By a direct estimate on this nonlinear hierarchy, using K ∈ L∞, similarly
as in the proof of Proposition 6.1 above, we obtain for all 1 ≤ m ≤ N and t ≥ 0,

∂tB
2
N,m . mB2

N,m +mB2
N,m+1 +m

(m−2∑
`=1

(
m− 1

`

)
BN,`+1BN,m−`

)2

+
m3

N2

(m−2∑
`=0

(
m− 2

`

)
BN,`+1BN,m−`−1

)2

+
m3

N2

(m−2∑
`=0

m−`−2∑
r=0

(
m− 1

`, r

)
BN,`+1BN,r+1BN,m−`−r−1

)2

,

and thus, after time integration, with BN,m|t=0 ≤ C1m=1,

B2
N,m(t) ≤ CeCt1m=1 +Cm

ˆ t

0
eCm(t−s)B2

N,m+1 +Cm

ˆ t

0
eCm(t−s)

(m−2∑
`=1

(
m− 1

`

)
BN,`+1BN,m−`

)2

+
Cm3

N2

ˆ t

0
eCm(t−s)

(m−2∑
`=0

(
m− 2

`

)
BN,`+1BN,m−`−1

)2

+
Cm3

N2

ˆ t

0
eCm(t−s)

(m−2∑
`=0

m−`−2∑
r=0

(
m− 1

`, r

)
BN,`+1BN,r+1BN,m−`−r−1

)2

. (6.4)

From here, we show by a direct induction argument that the subcritical estimates (6.3) can be improved
to the following: for all 1 ≤ m ≤ N and t, θ ≥ 0,

BN,m(t) ≤ (C0e
C0t)3

θm(m+ θ)2(m+θ)
(
N−

1
2
(m+θ) +N1−m). (6.5)

Choosing θ ≥ m − 2, this will imply the desired conclusion. We argue by induction on θ. For θ = 0,
this estimate (6.5) already follows from (6.3). Next, assuming that (6.5) holds for some θ ≥ 0, and
inserting it into (6.4), provided C0 ≥ 2C, we immediately deduce that (6.5) further holds with θ
replaced by θ + 1. This concludes the proof. �
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