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Abstract

A classical characterization result, which can be traced back to Gauss, states that the maximum
likelihood estimator (MLE) of the location parameter equals the sample mean for any possible
univariate samples of any possible sizes n if and only if the samples are drawn from a Gaussian
population. A similar result, in the two-dimensional case, is given in von Mises (1918) for the
Fisher-von Mises-Langevin (FVML) distribution, the equivalent of the Gaussian law on the unit
circle. Half a century later, Bingham and Mardia (1975) extend the result to FVML distributions
on the unit sphere Sk−1 := {v ∈ Rk : v′v = 1}, k ≥ 2. In this paper, we present a general MLE
characterization theorem for a large subclass of rotationally symmetric distributions on Sk−1, k ≥ 2,
including the FVML distribution.

AMS (2000) subject classification. Primary 62H05 62E10; secondary 60E05.
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1. Introduction.

In probability and statistics, a characterization theorem occurs whenever a given law is the
only one which satisfies a certain property. Besides their evident mathematical interest per se,
such characterization results also pave the way for generalizations and extensions which deepen our
understanding of the laws under scrutiny (see, e.g., Kagan, Linnik and Rao 1973). A famous example
of such a result is due to Gauss (see Gauss 1809), who proved that the normal is the only continuous
distribution for which the sample mean is always (that is, for all samples) the maximum likelihood
estimator (MLE) of the location parameter. A modern version of this result and an extension to the
general k-dimensional setup are given in Azzalini and Genton (2007). This MLE characterization
of the Gaussian distribution, which is particularly useful as it means that the intuitively reasonable
estimator of the location parameter always coincides with the most efficient one, has motivated
researchers to determine in non-linear contexts which distributions enjoy this remarkable property.

An important such non-linear setup are the so-called spherical distributions, that is, distributions
of random k-vectors taking values on the surface of the unit sphere Sk−1 := {v ∈ Rk : v′v = 1},
k ≥ 2. In general, the spherical distribution of a random unit vector X depends only on its distance–
in a sense to be made precise–from a fixed point µµµ ∈ Sk−1. This parameter µµµ can be viewed as a
“north pole” or “mean direction” for the problem under study, and hence corresponds to the location
parameter for spherical distributions. Although this field of research is as old as mathematical
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statistics themselves and involves several problems of different natures (astrophysics, biology, geology,
medicine, or meteorology, to cite but a few), its permanent study has only started in the 1950s, due
to the pioneering paper Fisher (1953). We refer the reader to Mardia (1972), Mardia (1975a),
Watson (1982 and 1983) or Mardia and Jupp (2000) for an overview on the literature of spherical
distributions.

One particular spherical distribution has received a lot of attention in the literature: the Fisher-
von Mises-Langevin, hereafter abbreviated as FVML, distribution. According to Watson (1983), it is
referred to as von Mises (1918) for the two-dimensional, as Fisher (1953) for the three-dimensional,
and as Langevin (1905) for the general k-dimensional setup, hence the terminology. Its probability
density function (pdf) is given by

fk(x;µµµ, κ) = Ck(κ) exp(κµµµ′x), x ∈ Sk−1,

where µµµ ∈ Sk−1 is the location parameter and κ > 0 some concentration parameter, and the
normalization constant Ck(κ) is equal to

Ck(κ) =
κk/2−1

(2π)k/2Ik/2−1(κ)
,

with Ik/2−1 the modified Bessel function of the first kind and of order k/2−1. The FVML distribution
is considered as the spherical analogue of the Gaussian distribution, which explains its central role
in the literature.

A reason for this analogy is simple: the FVML is the only spherical distribution for which the
(spherical) sample mean is always (that is, for all samples) the maximum likelihood estimator of the
location parameter. This property has been established in the two-dimensional case by von Mises
(1918), in dimension three by Arnold (1941) and, using a simpler method, by Breitenberger (1963),
and finally the result has been proved for any dimension in Bingham and Mardia (1975). In fact, the
method developed in Breitenberger (1963) allows the production of MLE characterizations for various
three-dimensional spherical distributions, as explained, e.g., in Mardia (1975b). In this paper, our
goal is similar: we aim to propose, for any dimension, a general MLE characterization theorem, valid
for several spherical distributions, including the FVML, within the family of rotationally symmetric
distributions introduced by Saw (1978) (see Section 2 for a concrete definition). As we shall see, one
of the most interesting features of our method is that for the characterization to hold it suffices to
have samples of a fixed size n instead of samples of all sizes, as usually required in the literature. In
particular, our method thus allows to weaken some conditions of Bingham and Mardia (1975) in case
of the FVML distribution, as they need all sample sizes for their main theorem to hold and later on
only briefly remark, without a formal proof, that this requirement could be weakened by restricting
to sample sizes n = 3k and n = 4k, k ∈ N0.

The outline of the paper is as follows. In Section 2, we establish and prove our general character-
ization result, and in Section 3 we discuss some examples of distributions on the sphere, including
of course the FVML, in the light of our main theorem.

2. The general characterization theorem

Let X1, . . . ,Xn be i.i.d. random k-vectors on the unit sphere Sk−1. As announced in the In-
troduction, we suppose that the common distribution of the Xi’s is rotationally symmetric, which
means that their common pdf (with respect to the usual surface measure on spheres) is of the form

x 7→ fµµµ(x) = ck,f1f1(x′µµµ), x ∈ Sk−1,

where µµµ ∈ Sk−1 is a location parameter and f1 : [−1, 1]→ R+
0 is a continuous and (strictly) monotone

increasing function, called angular function. This definition reflects the fact that the distribution
of each Xi depends only on the angle between it and the location parameter µµµ. Aside from the
fact that it encompasses many well-known spherical distributions, including the FVML obtained for
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f1(t) = exp(κt) with κ > 0, the family of rotationally symmetric distributions satisfies a natural
requirement: it is invariant for the actual choice of “north pole”. This implies that the family
falls within the much more general class of statistical group models (see for instance Chang 2004)
and thus enjoys all the advantages of this class. This explains why it is interesting to produce a
characterization theorem valid for a large subclass (to be defined below) of rotationally symmetric
distributions.

The log-likelihood function for X1, . . . ,Xn reads

Lµµµ(X1, . . . ,Xn) = n log(ck,f1) +
n∑
i=1

log(f1(X′iµµµ)).

In order to maximize this function under the constraint ||µµµ|| = 1 with ||µµµ|| = (µµµ′µµµ)1/2 (recall that we
are working on the unit sphere Sk−1), we need to introduce a Lagrangian multiplier λ ∈ R, yielding
the function Lµµµ(X1, . . . ,Xn) + λ(1− ||µµµ||). Assuming that f1 is differentiable, the related likelihood
equations for µµµ and λ correspond to{ ∑n

i=1 Xiϕf1(X′iµµµ) = 2λµµµ
µµµ′µµµ = 1, (2.1)

where ϕf1 = f ′1/f1 with f ′1 the derivative of f1. Note that, unlike Breitenberger (1963), we directly
differentiate w.r.t. the location parameter µµµ and not w.r.t. its spherical angles. From (2.1), we deduce
the following equation which defines the MLE µ̂µµf1 of µµµ under the angular density f1:

µ̂µµf1 =
∑n
i=1 Xiϕf1(X′iµ̂µµf1)

||
∑n
i=1 Xiϕf1(X′iµ̂µµf1)||

.

Now, let g1 be another differentiable angular density, and suppose that µ̂µµg1 , the MLE of µµµ under g1,
coincides with µ̂µµf1 , yielding the equality∑n

i=1 Xiϕf1(X′iµ̂µµf1)
||
∑n
i=1 Xiϕf1(X′iµ̂µµf1)||

= µ̂µµf1 = µ̂µµg1 =
∑n
i=1 Xiϕg1(X′iµ̂µµg1)

||
∑n
i=1 Xiϕg1(X′iµ̂µµg1)||

, (2.2)

where, as above, ϕg1 = g′1/g1. In what follows, we aim to prove, under some further mild conditions
on f1 (and g1), that equation (2.2) holds for any sample x1, . . . ,xn ∈ Sk−1 (the xi’s are realizations
of the random unit vectors Xi, i = 1, . . . , n) of fixed size n ≥ 3 if and only if ϕg1 = dϕf1 for
some positive real constant d, as this yields the desired general MLE characterization result (see the
paragraph right before Theorem 2.1).

In order to establish this general MLE characterization theorem, we proceed in several steps. We
start by fixing the sample size to n = N with N ≥ 3. Since we are working in a k(≥ 2)-dimensional
setup and have the full freedom of choice among all samples x1, . . . ,xN ∈ Sk−1, we can restrict our
attention to samples taking their values on some two-dimensional subspace of Sk−1, and hence study
equation (2.2) on a circle C. Let u1 and u2 denote the orthogonal unit vectors that span C, with

u1 =
∑N
i=1 xiϕf1(x′iµ̂µµf1)

||
∑N
i=1 xiϕf1(x′iµ̂µµf1)||

. (2.3)

The vectors x1, . . . ,xN thence can be expressed in terms of N angles α1, . . . , αN :
x1 = cos(α1)u1 + sin(α1)u2

...
xN = cos(αN )u1 + sin(αN )u2.

Of course, all N -tuples (α1, . . . , αN ) cannot arise in this way: by projecting equation (2.3) onto both
u1 and u2, these angles satisfy the two conditions{

cos(α1)ϕf1(cos(α1)) + . . .+ cos(αN )ϕf1(cos(αN )) > 0 (2.4)
sin(α1)ϕf1(cos(α1)) + . . .+ sin(αN )ϕf1(cos(αN )) = 0, (2.5)
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and these conditions are clearly necessary and sufficient for theN -tuple (α1, . . . , αN ) to be admissible.
With this “angular notation”, the starting point of our investigation, namely the equality µ̂µµf1 = µ̂µµg1 ,
takes on the guise

sin(α1)ϕg1(cos(α1)) + . . .+ sin(αN )ϕg1(cos(αN )) = 0. (2.6)

So the initial equality (2.2), which needs to hold for all samples x1, . . . ,xN ∈ Sk−1, has been turned
into equality (2.6) which needs to hold for all samples of angles α1, . . . , αN satisfying conditions (2.4)
and (2.5).

Remark 2.1 Rewriting the functional equation in (2.2) in terms of angles shows that if a solution
can be found for n = N , then the solution holds for n = N+1 by choosing xN+1 such that αN+1 = 0.
In other words, once the minimal value of N for which the problem can be solved is determined, the
problem is solvable for all fixed sample sizes n ≥ N .

Definition 2.1 We call minimal necessary sample size (MNSS) for MLE characterization the min-
imal value of N for which the MLE characterization can be proved under a given set of conditions
on the angular function f1.

Now, define the odd functions Hf1(t) = tϕf1(
√

1− t2) and Hg1(t) = tϕg1(
√

1− t2) for t ∈ [−1, 1].
With these definitions in hand, and in view of the conditions (2.4) and (2.5) as well as equation (2.6),
we are able to prove an intermediate result, namely that for N = 3 there exists a constant d ∈ R+

0

such that ϕg1(t) = dϕf1(t) for all t ∈ [0, 1].

Lemma 2.1 Let f1 and g1 be two continuously differentiable angular functions over [−1, 1], and
suppose that Hf1 is invertible over [−1, 1]. Then equation (2.6) holds for all triples of angles α1, α2, α3

satisfying (2.4) and (2.5) if and only if there exists a constant d ∈ R+
0 such that ϕg1(t) = dϕf1(t)∀t ∈

[0, 1].

Proof. The sufficiency part being trivial, we only prove the necessity part of the equivalence.
Remember that we can freely choose the observations x1,x2 and x3, and hence also the associated
angles α1, α2, α3 provided that conditions (2.4) and (2.5) are satisfied. We consider α1, α2 ∈ [−π2 ,

π
2 ]

such that sin(α1) and sin(α2) are of opposite signs. Therefore, Hf1(sinα1) and Hf1(sinα2) are of
opposite signs too, and their sum is in Hf1([−1, 1]) = [−Hf1(1), Hf1(1)]. Hence, the intermediate
value theorem ensures that there exists α3 ∈ [−π2 ,

π
2 ] such that (2.5) holds. All three angles lying thus

in the interval [−π2 ,
π
2 ] (but not all three simultaneously at the boundary of this interval–otherwise

condition (2.4) could not be satisfied), the positiveness of ϕf1 (inherited from the fact that f1 is
monotone increasing) readily allows to see that condition (2.4) is satisfied, too, hence this choice
of angles can be used in equation (2.6). Now note that, with our notations and choice of angles,
condition (2.5) can be expressed as

Hf1(sin(α1)) +Hf1(sin(α2)) +Hf1(sin(α3)) = 0. (2.7)

In the same fashion, rewriting equation (2.6) in terms of Hg1 yields

Hg1(sin(α1)) +Hg1(sin(α2)) +Hg1(sin(α3)) = 0. (2.8)

Now, the invertibility of Hf1 allows us to deduce from (2.7) that

sin(α3) = H−1
f1

(−Hf1(sin(α1))−Hf1(sin(α2))),

which, injected into equation (2.8) and bearing in mind that Hf1 and Hg1 are odd, leads to

Hg1 ◦H−1
f1︸ ︷︷ ︸

=:H

(Hf1(sin(α1)) +Hf1(sin(α2))) = Hg1 ◦H−1
f1︸ ︷︷ ︸

=:H

(Hf1(sin(α1))) +Hg1 ◦H−1
f1︸ ︷︷ ︸

=:H

(Hf1(sin(α2))).
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Let us suppose, w.l.o.g., that α1 ∈ [0, π2 ] and α2 ∈ [−π2 , 0] (the inverse situation would conduct to
exactly the same result). Setting a = Hf1(sin(α1)) and b = −Hf1(sin(α2)), the latter equation finally
can be written as

H(a− b) = H(a)−H(b) ∀a, b ∈ [0, Hf1(1)].

One easily recognizes that this equation is a particular form of the celebrated Cauchy functional
equation which has been extensively discussed in the mathematical literature; see, for instance,
Aczél and Dhombres (1989) under the assumption of continuity at a point for H. The latter function
being continuous by hypothesis (continuous differentiability of f1 and g1), a similar proof allows to
conclude here that H(s) = ds∀s ∈ [0, Hf1(1)] for some real constant d, hence that H(s) = ds∀s ∈
[−Hf1(1), Hf1(1)] since H is an odd function.

We thus have, for s = Hf1(t), that Hg1(t) = dHf1(t)∀t ∈ [−1, 1]. Finally, by definition of Hf1

and Hg1 , this yields ϕg1(t) = dϕf1(t)∀t ∈ [0, 1] with d > 0. This concludes the necessity part, and
consequently the claim holds. �

In view of Remark 2.1, the result of Lemma 2.1 is valid for any sample size N ≥ 3. Note that,
in case ϕf1 is even (implying that ϕg1 is even via (2.5) and (2.6)), this lemma clearly entails that
ϕg1(t) = dϕf1(t) over the complete interval [−1, 1], hence yields the desired result. For example,
for f1(t) = exp(κt) with κ > 0, the angular function of the FVML distribution, ϕf1(t) = κ, hence
Lemma 2.1 is sufficient for the MLE characterization of the FVML in any dimension (see Theorem 2.1
below).

If no parity assumptions are made on ϕf1 , Lemma 2.1 is evidently not sufficient to obtain the
desired general characterization theorem. Actually, we have to strengthen it into Lemma 2.2 below,
for which we need to define the following two odd functions: H̃f1(t) = tϕf1(−

√
1− t2) and H̃g1(t) =

tϕg1(−
√

1− t2) for t ∈ [−1, 1]. These functions will allow us to obtain constraints on ϕf1 and ϕg1
over [−1, 0], which constitutes the missing piece in our characterization puzzle. At first sight, this
seems quite easy: choosing α1 ∈ [π2 , π] and α2, α3 ∈ [−π2 ,

π
2 ] turns condition (2.5) into

H̃f1(sin(α1)) +Hf1(sin(α2)) +Hf1(sin(α3)) = 0 (2.9)

instead of (2.7) and equation (2.6) into

H̃g1(sin(α1)) +Hg1(sin(α2)) +Hg1(sin(α3)) = 0 (2.10)

rather than into (2.8). By Lemma 2.1, we know that Hg1(t) = dHf1(t)∀t ∈ [−1, 1]; (2.9) and (2.10)
then readily show that H̃g1(sin(α1)) = dH̃f1(sin(α1)), which will allow to achieve our goal. However,
an important factor is missing here: actually, we do not have this equality for all values of α1 ∈ [π2 , π],
and consequently our constraints on ϕf1 and ϕg1 will not cover the entire interval [−1, 0]. One can
easily imagine a situation in which α1 ∈ [π2 , π] and α2 ∈ [−π2 ,

π
2 ] but where α3 rather needs to lie

inside [π2 ,
3π
2 ] in order to fulfill both conditions (2.4) and (2.5) (think of an angular function f1 for

which ϕf1 takes high values on [−1,−1+ ε] and low values on [1− ε, 1] for some small ε > 0; values of
α1 near π

2 could no more satisfy condition (2.5)). This choice of α3 requires using H̃f1 and H̃g1 and
hence prevents from writing (2.9) and (2.10). Thus we need to tackle the problem from a slightly
different angle. One possibility would consist in adding conditions on f1 via H̃f1 , but these might
be difficult to check in practice and could rule out certain rotationally symmetric distributions. An
alternative solution, which we shall use here, rests in simply considering a sample size N greater
than 3.

Lemma 2.2 Let f1 and g1 be two continuously differentiable angular functions over [−1, 1], and
suppose that Hf1 is invertible over [−1, 1]. Fix N = 3 + d(Hf1(1))−1 maxt∈[0,1] H̃f1(t) − 1e. Then
equation (2.6) holds for all N -tuples of angles α1, . . . , αN satisfying (2.4) and (2.5) if and only if
there exists a constant d ∈ R+

0 such that ϕg1(t) = dϕf1(t)∀t ∈ [−1, 1].

Proof. Again the sufficiency part of the equivalence is trivial and we concentrate our attention on
the necessity part. As stated in Remark 2.1, we can choose all αi = 0 for i > 3 in order to be left with
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only the three angles α1, α2 and α3. Lemma 2.1 then tells us that there exists a positive constant
d such that ϕg1(t) = dϕf1(t)∀t ∈ [0, 1]. It remains to obtain the same result over [−1, 0]. To do so,
fix α1 ∈ [π2 , π]. For k = d(Hf1(1))−1H̃f1(sin(α1))− 1e ≤ N − 3, choose α2 = · · · = αk+1 = −π2 . We
then have that

sin(α1)ϕf1(cos(α1)) + . . .+ sin(αk+1)ϕf1(cos(αk+1)) = H̃f1(sin(α1))− kHf1(1) ∈ [0, Hf1(1)).

The intermediate value theorem ensures that we can find αk+2 ∈ [−π2 ,
π
2 ] such that sin(α1)ϕf1(cos(α1))+

. . . + sin(αk+2)ϕf1(cos(αk+2)) = 0. Finally, take αk+3 = · · · = αN = 0: condition (2.5) then holds
trivially. Moreover, since k + 3 ≤ N , it is clear that

cos(α1) + . . .+ cos(αN ) ≥ cos(α1) + cos(αN ) = cos(α1) + 1 > 0,

and hence, in view of ϕf1 > 0, condition (2.4) is satisfied too by this choice of angles. Now, rewriting
condition (2.5) and equality (2.6) in terms of Hf1 , Hg1 , H̃f1 and H̃g1 respectively leads to

H̃f1(sin(α1))− kHf1(1) +Hf1(sin(αk+2)) = 0

and
H̃g1(sin(α1))− kHg1(1) +Hg1(sin(αk+2)) = 0.

Since ϕg1 = dϕf1 over [0, 1], and hence Hg1 = dHf1 over [−1, 1], it follows that H̃g1(sin(α1)) =
dH̃f1(sin(α1))∀α1 ∈ [π2 , π], and similar manipulations as in the proof of Lemma 2.1 reveal that
ϕg1(t) = dϕf1(t)∀t ∈ [−1, 0], which concludes the proof. �

The statement of this lemma begs for a comment regarding the sample size N . Actually, whenever
maxt∈[0,1] H̃f1(t) ≤ Hf1(1), N equals 3 and the requirement of Lemma 2.2 is not stronger than the
one of Lemma 2.1. One is tempted to say that then we have a problem, as discussed just before
Lemma 2.2. However, as stated there, the fact that N = 3 is in general not sufficient to obtain a
result over the whole interval [−1, 1] is due to a lack of knowledge about ϕf1 , which might imply that
H̃f1 takes much higher values than Hf1 . This problematic constellation is precisely ruled out here,
as we know that H̃f1(t) ≤ Hf1(1) over [0, 1]. Therefore, Lemma 2.2 covers all possible cases. One
might then wonder why we have introduced Lemma 2.1, as the more general Lemma 2.2 supersedes
it. The reasons are mainly twofold: on the one hand, our present approach is more constructive
and hence easier to follow, and, on the other hand, Lemma 2.1 with its weaker conditions contains
several interesting rotationally symmetric distributions (such as, e.g., the FVML) and therefore is
interesting per se.

Now, Lemma 2.1 and Lemma 2.2, under the same conditions on f1 but for different minimal
sample sizes N , yield the desired result, namely that (2.2) entails that there exists a positive constant
d such that ϕg1(t) = dϕf1(t)∀t ∈ [−1, 1]. Solving this first-order differential equation is easy and
leads to g1(t) = c(f1(t))d, where c > 0 is a normalizing constant. Thus, up to the exponent d and
the corresponding normalizing constant c we retrieve the original angular function f1, which allows
us to state our general MLE characterization theorem.

Theorem 2.1 (MLE characterization theorem of rotationally symmetric distributions)
Let f1 and g1 be two continuously differentiable angular functions over [−1, 1] associated with rota-
tionally symmetric distributions over Sk−1, k ≥ 2. Suppose that Hf1 is invertible over [−1, 1].

(i) Fix N = 3 + d(Hf1(1))−1 maxt∈[0,1] H̃f1(t)−1e. Then µ̂µµf1 = µ̂µµg1 for all samples of fixed sample
size n ≥ N if and only if there exist constants c, d ∈ R+

0 such that g1(t) = c(f1(t))d ∀t ∈ [−1, 1].

(ii) Fix N = 3 and suppose that f1 is such that ϕf1 is even. Then µ̂µµf1 = µ̂µµg1 for all samples of fixed
sample size n ≥ N if and only if there exist constants c, d ∈ R+

0 such that g1(t) = c(f1(t))d ∀t ∈
[−1, 1].
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Note that, when N = 3, we have reached the MNSS for MLE characterization. In all other cases,
the value of N constitutes a good upper bound on the MNSS, which seems to be difficult to obtain
in general. It is however interesting to remark that the MNSS, in view of our upper bounds, will
always be finite, contrarily to the Euclidean case (see Duerinckx et al. 2012).

Finally note that, for (strictly) monotone decreasing angular functions f1 and g1, all the above
results can be retrieved up to some obvious modifications.

3. Examples

In this final section, we shall discuss some examples of rotationally symmetric distributions in
the light of our findings and show whether they are MLE-characterizable or not. These examples
include the FVML distribution, the median distribution, the linear, logarithmic and logistic spherical
distributions (used in Ley et al. 2013), the wrapped normal distribution (extensively described in
Mardia 1972) and a family of symmetric distributions on the unit circle (introduced in Jones and
Pewsey 2005). All these distributions possess continuously differentiable angular functions.

Let us start with the FVML distribution, whose angular function is of the form f1(t) = eκt

with κ > 0. One immediately sees that ϕf1(t) = κ and Hf1(t) = κt, and hence all conditions for
Theorem 2.1(ii) are fulfilled, showing that the FVML can be characterized by its MLE, which here
coincides with the standardized sample mean

∑n
i=1 xi/||

∑n
i=1 xi||. Since our result holds true for

any fixed sample size n ≥ 3 (and does not necessitate any other sample size), we generalize the result
of Bingham and Mardia (1975), as already announced in the Introduction.

Next, we consider what we call the “median distribution”, whose angular function reads f1(t) =
ce−a arccos t with a > 0 and c a normalizing constant. Evident computations show that ϕf1(t) = a√

1−t2
and Hf1(t) = a sign(t). The latter function is not invertible over [−1, 1], consequently our MLE
characterization theorem does not apply in this particular case. However, and this explains our ter-
minology, Purkayastha (1991) has established in dimensions 2 and 3 that this rotationally symmetric
distribution can be characterized by its MLE, which coincides with the spherical median defined in
Fisher (1985). For the method and the related assumptions and conditions, see Purkayastha (1991).

Thirdly, we investigate the case of the linear spherical distribution, with angular function f1(t) =
t+ a, a > 1. It follows that ϕf1(t) = 1

t+a and Hf1(t) = t
a+
√

1−t2 . One notices that ϕf1 is not even,
and since the derivative

d
dt
Hf1(t) =

a+ 1√
1−t2

(a+
√

1− t2)2
> 0 ∀t ∈ [−1, 1],

this example falls into the category of Theorem 2.1(i), and hence is MLE-characterizable.
Fourthly, we analyze the logarithmic spherical distribution with associated angular function

f1(t) = log(t+a), a > 2. In this case, we have ϕf1(t) = 1
(t+a) log(t+a) andHf1(t) = t

(a+
√

1−t2) log(a+
√

1−t2) .
Again, ϕf1 is not even, and straightforward calculations reveal that

d
dt
Hf1(t) =

a log (a+
√

1− t2) + 1√
1−t2 log (a+

√
1− t2) + t2√

1−t2

(a+
√

1− t2)2(log (a+
√

1− t2))2
> 0 ∀t ∈ [−1, 1].

Theorem 2.1(i) thus applies to this example as well.
Fifthly and lastly for the set of spherical distributions described in Ley et al. (2013), we consider

the logistic spherical distribution with angular function f1(t) = a exp (−b arccos(t))
(1+a exp (−b arccos(t)))2 , where a and b

are chosen in such a way that f1 satisfies the conditions of an angular function. Calculations show
that ϕf1(t) = b(1−a exp (−b arccos t))

(1+a exp (−b arccos t))
√

1−t2 and Hf1(t) = b(1−a exp (b arccos (
√

1−t2)))
(1+a exp (b arccos (

√
1−t2))) sign(t). Once more,

ϕf1 does not happen to be even, and the derivative

d
dt
Hf1(t) =

2a2b2√
1− t2

exp (−b arccos
√

1− t2)
(1 + a exp (−b arccos

√
1− t2))2
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is strictly positive over [−1, 1], hence the logistic spherical distributions satisfy the conditions of
Theorem 2.1(i).

Sixthly, we analyze the wrapped normal distribution, whose angular function reads f1(t) =
1
2πϑ3(arccos(t)/2, e−σ

2/2) in terms of the Jacobi theta function ϑ3(z, q) :=
∑∞
n=−∞ qn

2
e2niz. Straight-

forward calculations yield ϕf1(t) = − 1
2

1√
1−t2

ϑ′3(
1
2 arccos(t),e−σ

2/2)

ϑ3(
1
2 arccos(t),e−σ2/2)

, where ϑ′3 denotes the derivative of

ϑ3 w.r.t. its first argument. Using the identity ϑ′3(z,q)
ϑ3(z,q)

= −4
∑∞
n=1

q2n−1 sin(2z)
2q2n−1 cos(2z)+q4n−2+1 (see Whit-

taker and Watson 1990, p. 489), our expression simplifies to (the non-even function)

ϕf1(t) = 2
∞∑
n=1

(
e−σ

2/2
)2n−1

2t
(
e−σ2/2

)2n−1 +
(
e−σ2

)2n−1 + 1
= 2

∞∑
n=1

1

2t+
(
e−σ2/2

)2n−1 +
(
eσ2/2

)2n−1 .

This series is uniformly convergent and defines a positive function over [−1, 1]. We then have

Hf1(t) = 2
∞∑
n=1

t

2
√

1− t2 +
(
e−σ2/2

)2n−1 +
(
eσ2/2

)2n−1

which uniformly converges over [−1, 1]. The series of the derivatives w.r.t. t writes

2
∞∑
n=1

2√
1−t2 +

(
e−σ

2/2
)2n−1

+
(
eσ

2/2
)2n−1

(
2
√

1− t2 +
(
e−σ2/2

)2n−1 +
(
eσ2/2

)2n−1
)2

which uniformly converges over every compact of (−1, 1); hence the differentiation under the sum-
mation sign is allowed. Since this derivative is strictly positive over (−1, 1), Hf1 is invertible, and
Theorem 2.1(i) thus applies to this example too.

Finally, we consider the family of symmetric distributions on the unit circle introduced in Jones
and Pewsey (2005), with angular functions of the form f1(t) = γ(κ, ψ)(1 + tanh (κψ)t)1/ψ, where
κ ≥ 0, ψ ∈ R and where γ is a normalization constant. Fixing ψ = 1, −1 or 0 (by continuity)
yields respectively the cardioid, the wrapped Cauchy or the von Mises distribution. Straightforward
calculations give ϕf1(t) = tanh (κψ)

ψ(1+tanh (κψ)t) and Hf1(t) = tanh (κψ)t

ψ(1+tanh (κψ)
√

1−t2) . Similar manipulations as
before yield

d
dt
Hf1(t) =

tanh (κψ)
ψ

(1 + tanh(κψ)√
1−t2 )

(1 + tanh(κψ)
√

1− t2)2
,

which is strictly positive over [−1, 1] provided that ψ ≥ 0. Our characterization theorem thus applies
to this example whenever ψ ≥ 0. Note that, for ψ > 0 (e.g., for the cardioid distribution), ϕf1 is
not even, hence Theorem 2.1(i) has to be used, whereas, for ψ = 0 corresponding to the FVML case,
we retrieve exactly the results of our first example in this section. Finally, for ψ < 0 (e.g., for the
wrapped Cauchy distribution), our result does not apply.
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[13] Langevin, P. (1905) Sur la théorie du magnétisme. J. Phys. 4, 678–693; Magnétisme et théorie
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