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Abstract. This work is devoted to several translation-invariant models in non-relativistic
quantum field theory (QFT), describing a non-relativistic quantum particle interacting
with a quantized relativistic field of bosons. In this setting, we aim at the rigorous
study of Cherenkov radiation or friction effects at small disorder, which amounts to
the metastability of the embedded mass shell of the bare non-relativistic particle when
the coupling to the quantized field is turned on. Although this problem is naturally
approached by means of Mourre’s celebrated commutator method, important regular-
ity issues are known to be inherent to QFT models and restrict the application of the
method. In this perspective, we introduce a novel non-standard procedure to construct
Mourre conjugate operators, which differs from second quantization and allows to cir-
cumvent many regularity issues. To show its versatility, we apply this construction to
the Nelson model with massive bosons, to Fröhlich’s polaron model, and to a quantum
friction model with massless bosons introduced by Bruneau and De Bièvre: for each of
those examples, we improve on previous results.
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1. Introduction and main results

1.1. General overview. This work is devoted to several models in non-relativistic quan-
tum field theory (QFT), describing a non-relativistic quantum particle interacting with a
quantized relativistic field of bosons, and we focus on translation-invariant models where
the total momentum is conserved. In this context, we aim at the rigorous study of
Cherenkov radiation or friction effects: if the initial momentum |P | of the non-relativistic
particle exceeds some threshold |P?| (more precisely, if its initial energy exceeds the mini-
mal energy for one-boson states), then the particle is expected to dissipate energy and to
slow down by emitting so-called Cherenkov radiation. In terms of spectral theory, this dis-
sipative phenomenon is translated into the continuity of the energy-momentum spectrum
and the absence of embedded mass shell in some region with |P | > |P?|.

We focus on the perturbative regime corresponding to a weak particle-field coupling.
In that setting, the starting point is that, for large momentum |P | > |P?|, the mass
shell E = 1

2P
2 of the bare non-relativistic particle is embedded in the continuous spectrum

of the uncoupled model. In link with Fermi’s golden rule, this mass shell is then indeed
expected to be metastable and to disappear as the coupling to the quantized field is turned
on. Such spectral results are naturally complemented with scattering resonance descrip-
tions. As interaction Hamiltonians in QFT models are typically not relatively compact,
even the perturbative analysis at weak coupling is a nontrivial problem for which still only
partial results are available [3, 12, 37, 18, 11]. Note that a different line of research has
aimed to rather describe the reduced dynamics of the non-relativistic particle in the ki-
netic limit: in [49, 19, 13], it is shown to take form of a Boltzmann equation describing the
slowdown of the particle. Although supporting the same thesis, such results are limited to
diagonal time regimes: they provide a kinetic description only on some suitable timescale,
typically for times of order t = O(g−2) in terms of the coupling constant g � 1, and they
do not imply any detailed spectral information.

In recent decades, there has been much interest in spectral and scattering theory for QFT
models, aiming to adapt the various techniques originally developed for the study of N -
particle Schrödinger operators [31]. In particular, Mourre’s commutator method [39, 2, 31]
has emerged as a fundamental tool to explore the nature of the essential spectrum of such
Hamiltonians. This method is more general than related dilation-analyticity techniques
and further provides direct insight into time-dependent scattering theory [41, 48, 8]. The
starting point is the validity of a so-called Mourre estimate: given a self-adjoint operator H
and a spectral interval J ⊂ σ(H), we aim to construct a so-called ‘conjugate’ operator A
such that

1J(H)[H, iA]1J(H) ≥ c01J(H) +K,

for some constant c0 > 0 and some compact operator K. Conjugate operators can be
viewed as quantum analogues of escape functions for Hamiltonian dynamics. Under suit-
able regularity assumptions (such as H-boundedness of [H, iA]), the Mourre estimate can
be used to infer detailed spectral information on H. We also recall the following perturba-
tive version: if a Mourre estimate holds for H and if an H-bounded perturbation V satis-
fies a suitable regularity condition (such as H-boundedness of [V, iA]), then the perturbed
operator H + gV also satisfies a Mourre estimate on any spectral subinterval provided
that g is small enough. Perturbative Mourre theory then allows to study the spectrum
of perturbed Hamiltonians at weak coupling: it can be used to infer the metastability of
embedded bound states under Fermi’s golden rule, and time-dependent scattering results
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are further known to hold under additional regularity assumptions, see [8]. In a nutshell,
these techniques allow to reduce the problem to constructing a conjugate operator for the
uncoupled Hamiltonian such that the required regularity conditions are satisfied. We refer
to Appendix A for a brief overview of Mourre’s theory with precise definitions.

Yet, important difficulties arise when applying this method to QFT models: due to the
infinite-dimensionality of the underlying Fock space, commutators of the Hamiltonian with
natural choices of conjugate operators are typically not relatively bounded. This lack of
regularity has led in particular to the development of so-called “singular” Mourre theory
in some settings, see [47, 38, 27, 28, 20], but the latter gives no access to time-dependent
scattering theory. In the present contribution, we develop a new strategy to construct
conjugate operators for QFT models at weak coupling, which solves many regularity issues
and thus allows to take advantage of the full power of regular Mourre theory in several
new cases. The construction is based on the following two steps:
Step 1: We start with a generic construction for a tentative conjugate operator for the

uncoupled model of interest: given a Hamiltonian with a convex symbol h(k), we
consider the generator of dilations around the energy minimizer h(k0) = mink h(k),
that is, the operator

Ak0 := i
2

(
(k − k0) · ∇k +∇k · (k − k0)

)
. (1.1)

By convexity, this obviously yields a Mourre inequality in form of

[h(k), iAk0 ] = (k − k0) · ∇h(k) ≥ 0. (1.2)

In case of QFT models, however, this construction leads to regularity issues: com-
mutators either with the uncoupled Hamiltonian or with the perturbation are gen-
erally uncontrolled. A typical issue is that the constructed conjugate (1.1) may
depend on the number of bosons via the energy minimizer k0 and therefore not
lead to a second-quantization operator.

Step 2: Although conjugates that are not second-quantization operators lead to regularity
issues in general, second-quantization operators are not the only type of admissible
operators. As inspired by our previous work [17], we devise a new construction to
replace second quantization, which may a priori seem quite iconoclastic: instead
of summing operators over different boson variables, we consider some ‘signed
maximum’ of operators, see Section 2.1.2. Using this to modify the tentative
construction in Step 1, we manage to solve many regularity issues.

To show the wide applicability of this procedure to construct conjugate operators, we
illustrate it on two paradigmatic models.
— Translation-invariant Nelson model with massive bosons: Previous results on this model

were restricted to the energy-momentum spectrum below the two-boson threshold and
were further limited by the lack of regularity [3, 35, 30, 37, 18]. Our new construc-
tion (1.1) amounts to expressing relative boson momenta in the frame that minimizes
the kinetic energy, which leads us to new conjugates that allow to study the spectrum
for the first time beyond the two-boson threshold. In addition, we manage to avoid
regularity issues and to exploit the full power of Mourre’s theory: it leads us to a better
understanding of Cherenkov radiation, in particular by deriving scattering resonance
descriptions. Our construction is quite general and may be of independent interest
for other massive QFT models: the same analysis can be repeated, for instance, for
Fröhlich’s polaron model [36].
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— Quantum friction model with massless bosons introduced in [6, 11]: Previous results
on this model were limited by the lack of regularity [11]. By our new construction
of conjugate operators, we manage to cure all regularity issues and to exploit the full
power of Mourre’s theory. This considerably improves on previous results on the topic,
by establishing in particular the first scattering resonance description.

We expect these results to provide valuable inspiration to further understand Cherenkov
radiation in the massless Nelson model, for which the only known result at the moment is
a weak form of instability for the embedded mass shell [12]. Another perspective concerns
the large-coupling regime, for which very little is known even for the massive Nelson model
beyond the two-boson threshold, cf. [37, 18], and our new constructions can also be expected
to inspire further progress in that case.

In the next two subsections, we introduce in full detail the two models that we focus
on in this work, and we formulate our main results, the proofs of which are postponed to
Sections 2 and 3.

1.2. Translation-invariant massive Nelson model. The Nelson model was introduced
in [40] as a toy model in QFT for a free non-relativistic quantum particle interacting
linearly with a quantized radiation field of relativistic scalar bosons; see e.g. [36] and
references therein. While very complete results are available in the confined setting [15,
4, 29, 16, 28], both for massive and massless bosons, the understanding remains quite
limited in the translation-invariant setting that we consider here. For massive bosons,
a detailed description of the bottom of the energy-momentum spectrum was obtained
in [50, 35, 36], but the structure of the essential spectrum is only understood below the
two-boson threshold, both at weak [33, 3] and large coupling [37, 18]. For massless bosons,
the bottom of the spectrum is studied in [24, 25, 42, 26, 43] and the upper spectrum in [9]
in the case |P | < |P?|, but no spectral result seems available for |P | > |P?|: the only
known result related to Cherenkov radiation is a weak form of instability for the embedded
mass shell [12]. In the sequel, we shall focus on the case of massive bosons in the weak-
coupling regime and use Mourre’s theory to investigate the essential spectrum around the
embedded mass shell beyond the two-boson threshold, aiming at a detailed understanding
of Cherenkov radiation in that case.

1.2.1. Description of the model. The state space for the Nelson model is given by the
product Hilbert space

H := Hp ⊗Hf , (1.3)

where:
— Hp := L2(Rd) is the state space for the non-relativistic quantum particle, and we denote

respectively by x and p = 1
i∇x the particle position and momentum coordinates;

— Hf is the state space for the quantized radiation field and takes form of the bosonic
Fock space

Hf := Γs(h) :=
⊕∞

n=0 Γ
(n)
s (h),

constructed on the single-boson space h := L2(Rd). In other words, we set Γ
(0)
s (h) := CΩ

with Ω the vacuum state, and for n ≥ 1 the n-boson state space is the n-fold symmetric
tensor product

Γ(n)
s (h) := h⊗sn.
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We work in the momentum representation, with k ∈ Rd standing for the momentum
coordinate of the field bosons.

On this bosonic Fock space Hf , we use standard notation for creation and annihilation
operators {a∗(k)}k∈Rd and {a(k)}k∈Rd , which obey the canonical commutation relations

[a∗(k), a∗(k′)] = [a(k), a(k′)] = 0, [a(k), a∗(k′)] = δ̄(k − k′), a(k)Ω = 0.

We also write dΓ(A) for the second quantization of an operator A on h, and in particular
N := dΓ(1) is the number operator on Hf . In this setting, we consider the following
translation-invariant Hamiltonian,

Hg := Hp ⊗ 1Hf + 1Hp ⊗H f + gΦ(ρx) on H, (1.4)

where:
— the Hamiltonian of the free quantum particle is given by the standard non-relativistic

dispersion relation
Hp := 1

2p
2 on Hp;

— the free field Hamiltonian is given by second quantization,

H f := dΓ(ω) =

ˆ
Rd
ω(k) a∗(k)a(k) d̄k on Hf ,

where for bosons of mass m ≥ 0 the single-boson dispersion relation reads

ω(k) :=
√
m2 + |k|2; (1.5)

— the real number g is the coupling constant for the particle with the bosonic field;
— the interaction Hamiltonian is given by a translation-invariant field operator

Φ(ρx) :=

ˆ
Rd
ρ(k)

(
a∗(k)e−ik·x + a(k)eik·x

)
d̄k, (1.6)

for some real-valued interaction kernel ρ ∈ L2(Rd) with ρ 6≡ 0.
Our results on this model will be restricted to the case of massive bosons m > 0 in the
weak-coupling regime |g| � 1. We could also treat the case of a single-boson dispersion
relation of the form ω(k) = m + |k| with m > 0. Regarding the interaction kernel ρ, we
shall need to assume strong enough regularity both in infrared and ultraviolet domains,
typically requiring ρ to have both some Hs regularity and some polynomial decay.

Before studying this model, we recall its well-posedness properties. For that purpose,
we first define the vector subspace

Cf := dΓfin(C∞c (Rd)) ⊂ Hf ,

where for a vector subspace g ⊂ h we denote by Γfin(g) the algebraic direct sum of the
algebraic tensor products g⊗sn. In these terms, the uncoupled Nelson Hamiltonian

H0 = Hp ⊗ 1Hf + 1Hp ⊗Hf

is clearly essentially self-adjoint on C∞c (Rd) ⊗ Cf (henceforth, tensor products between
spaces that are not complete are implicitly understood in the algebraic sense). Besides,
as ρ ∈ L2(Rd), standard estimates ensure that the field operator Φ(ρx) is (1Hp ⊗ N1/2)-
bounded. In case of massive bosons m > 0, as dΓ(ω) ≥ mN , this entails that Φ(ρx) is an
infinitesimal perturbation of H0. The Kato–Rellich theorem then ensures that for all g the
coupled Nelson Hamiltonian Hg is self-adjoint on the same domain D(H0) and essentially
self-adjoint on the same core C∞c (Rd)⊗ Cf .
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1.2.2. Translation invariance. By definition, cf. (1.4), the Hamiltonian Hg is translation-
invariant in the sense that it commutes with the total momentum operator

Ptot := p⊗ 1Hf + 1Hp ⊗ dΓ(k) on H.

This allows to decompose Hg as a direct integral with respect to the spectrum of the latter.
More precisely, in terms of the following unitary transformation, which goes back to Lee,
Low, and Pines [32],

U : H →
ˆ ⊕
Rd
Hf d̄P, U := (F ⊗ IdHf ) ◦ Γ(eik·x),

where F stands for the Fourier transform on Hp and where Γ is the second quantization
functor, we obtain the decomposition

UHgU
∗ =

ˆ ⊕
Rd
Hg(P ) d̄P on

ˆ ⊕
Rd
Hf d̄P , (1.7)

where for all P ∈ Rd the fiber Hamiltonian Hg(P ) takes the form

Hg(P ) := 1
2(P − dΓ(k))2 +H f + gΦ(ρ) on Hf , (1.8)

in terms of the fiber interaction Hamiltonian

Φ(ρ) :=

ˆ
Rd
ρ(k) (a∗(k) + a(k)) d̄k. (1.9)

We recall well-posedness properties of these fiber Hamiltonians. First, for P = 0, the
uncoupled fiber Hamiltonian H0(0) = 1

2dΓ(k)2 +H f is essentially self-adjoint on Cf . Next,
for any P ∈ Rd, noting that 1

2(P − dΓ(k))2 − 1
2dΓ(k)2 = 1

2 |P |
2 − P · dΓ(k) is an infinites-

imal perturbation of H0(0), the Kato–Rellich theorem ensures that the uncoupled fiber
Hamiltonian

H0(P ) = 1
2(P − dΓ(k))2 +H f

is also essentially self-adjoint on Cf and that its domain is independent of P ,

D := D(H0(P )) = D(H0(0)) = D(dΓ(k)2) ∩ D(dΓ(ω)). (1.10)

Besides, as ρ ∈ L2(Rd), standard estimates ensure that the field operator Φ(ρ) is N1/2-
bounded. In case of massive bosons m > 0, as dΓ(ω) ≥ mN , this entails that Φ(ρ) is an
infinitesimal perturbation of H0(P ). The Kato–Rellich theorem then ensures that for all g
the coupled fiber Hamiltonian Hg(P ) is self-adjoint on the same domain D and essentially
self-adjoint on the same core Cf .

1.2.3. Energy-momentum spectrum. In this translation-invariant setting, the natural ob-
ject of study is the energy-momentum spectrum {(P,E) : E ∈ σ(Hg(P ))}, where σ(Hg(P ))
is the spectrum of the fiber Hamiltonian Hg(P ) at fixed total momentum P . We start by
recalling the explicit structure of this spectrum for the uncoupled Hamiltonian.

Lemma 1.1 (Spectrum of uncoupled Nelson model). Consider the translation-invariant
Nelson model with massive bosons m > 0, cf. (1.3)–(1.9). Given a total momentum P ∈ Rd,
the spectrum of the uncoupled fiber Hamiltonian H0(P ) is given by

σpp(H0(P )) = {1
2P

2}, σac(H0(P )) = [E0(P ),∞), σsc(H0(P )) = ∅, (1.11)
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where the eigenvalue 1
2P

2 is simple and is associated with the vacuum state Ω, and where
the bottom of the absolutely continuous spectrum is given by

E0(P ) := 1
2c(P )2 +

√
m2 + (|P | − c(P ))2, (1.12)

in terms of the unique solution c(P ) ∈ [0, 1) of the implicit equation

c(P ) =
|P | − c(P )√

m2 + (|P | − c(P ))2
.

Moreover, there is a unique critical value |P?| > 1 such that

E0(P?) = 1
2P

2
? , (1.13)

and the following alternative then holds:
— for |P | < |P?|, the fiber Hamiltonian H0(P ) has an isolated ground state at 1

2P
2;

— for |P | > |P?|, the fiber Hamiltonian H0(P ) has no ground state and its eigenvalue is
embedded in the absolutely continuous spectrum. ♦

Before turning to our main results on coupled Hamiltonians, we further elaborate on
this statement and emphasize the layered structure of the spectrum. By definition (1.8),
the uncoupled fiber Hamiltonian commutes with the number operator N and thus splits
as a direct sum on many-boson state spaces,

H0(P ) =
∞⊕
n=0

H
(n)
0 (P ) on Hf =

∞⊕
n=0

Γ(n)
s (h), (1.14)

in terms of the restrictions
H

(n)
0 (P ) := H0(P )|

Γ
(n)
s (h)

.

While the eigenvalue 1
2P

2 is associated with the vacuum state Ω and corresponds to a
free non-relativistic particle with momentum P , the absolutely continuous spectrum cor-
responds to states supporting at least one boson,

σac(H0(P )) = adh

∞⋃
n=1

σac

(
H

(n)
0 (P )

)
, (1.15)

where adh stands for the closure. For all n ≥ 1, the restriction H(n)
0 (P ) is a multiplication

operator in momentum coordinates, with symbol

H
(n)
0 (P ; k1, . . . , kn) := 1

2

(
P −

n∑
j=1

kj

)2
+

n∑
j=1

ω(kj). (1.16)

Its spectrum is absolutely continuous and coincides with the essential image of the symbol,

σac

(
H

(n)
0 (P )

)
=
[
E

(n)
0 (P ),∞

)
, σpp

(
H

(n)
0 (P )

)
= σsc

(
H

(n)
0 (P )

)
= ∅,

in terms of the so-called n-boson energy threshold

E
(n)
0 (P ) := min

k1,...,kn∈Rd
H

(n)
0 (P ; k1, . . . , kn). (1.17)

In the case of massive bosons m > 0, it is easily checked that

E
(n)
0 (P ) < E

(n+1)
0 (P ) for all n, and E

(n)
0 (P ) ↑ ∞ as n ↑ ∞,
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cf. Lemma 3.2 below. In view of (1.15), this ensures in particular that the bottom of the
absolutely continuous spectrum is

E0(P ) := E
(1)
0 (P ) = min

n≥1
E

(n)
0 (P ),

and we then recover the expression (1.12) by computing the minimum of (1.16) for n = 1.
Due to the layered structure of the spectrum, cf. (1.15), our results in the sequel are
naturally restricted away from energy thresholds.

1.2.4. Main results. We may now formulate our main results on the massive Nelson model.
Our starting point is the following perturbative Mourre commutator result: for |P | > |P?|,
as the eigenvalue 1

2P
2 is embedded in the essential spectrum, a Mourre estimate is proven

around and above the eigenvalue away from energy thresholds, as well as below the two-
boson threshold, and this is complemented with a regularity statement for the interaction
Hamiltonian. We refer to Appendix A for standard definitions and notation related to
Mourre’s theory.

Theorem 1.2 (Mourre estimate for Nelson model). Consider the translation-invariant Nel-
son model with massive bosons m > 0, cf. (1.3)–(1.9). Given a total momentum |P | > |P?|,
define nP ≥ 1 such that

1
2 |P |

2 ∈
[
E

(nP )
0 (P ), E

(nP+1)
0 (P )

)
, (1.18)

where we recall definitions (1.13) and (1.17). Then, for n = 1 as well as for any n ≥ nP ,
we can construct an operator AP,n on Hf , essentially self-adjoint on Cf , with the following
properties.
(i) The uncoupled fiber Hamiltonian H0(P ) is of class C∞(AP,n). Moreover, the uni-

tary group generated by AP,n leaves the domain of H0(P ) invariant, and the iterated
commutators adsiAP,n(H0(P )) extend as H0(P )-bounded operators for all s ≥ 0.

(ii) For all ε > 0 and all energy intervals I ⊂
[
E

(n)
0 (P ) + ε, E

(n+1)
0 (P )

)
, the following

Mourre estimate holds with respect to AP,n on I,

1I(H0(P )) [H0(P ), iAP,n]1I(H0(P )) ≥ εΠ̄Ω 1I(H0(P )) Π̄Ω,

where Π̄Ω is the orthogonal projection on CΩ⊥. In particular, the Mourre estimate is
strict if the interval I does not contain the eigenvalue 1

2P
2.

(iii) The fiber interaction Hamiltonian Φ(ρ) satisfies the following regularity condition: if
the interaction kernel ρ belongs to Hν(Rd) with 〈k〉ν∇νρ ∈ L2(Rd) for some ν ≥ 1,
then the iterated commutators adsiAP,n(Φ(ρ)) extend as H0(P )1/2-bounded operators
for all 1 ≤ s ≤ ν. ♦

Compared to previous work on the topic [3, 37, 18], this provides the first Mourre
estimate above the two-boson threshold. In addition, the C∞-regularity stated in item (i)
allows us to exploit for the first time the full power of Mourre’s theory, cf. Appendix A,
while previous constructions were restricted to C2-regularity. As a corollary, we deduce
the following description of the essential spectrum of fiber Hamiltonians at weak coupling,
which proves in particular the instability of the mass shell E = 1

2P
2 of the free non-

relativistic particle when coupled to the bosonic field. This is further complemented with
a dynamical resonance description, which exploits the C∞-regularity and is thus new even
below the two-boson threshold. It constitutes a precise formulation of Cherenkov radiation
for the massive Nelson model.
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Corollary 1.3 (Cherenkov radiation for Nelson model). Consider the translation-invariant
Nelson model with massive bosons m > 0, cf. (1.3)–(1.9), and assume that the interaction
kernel ρ belongs to H2(Rd) with 〈k〉2∇2ρ ∈ L2(Rd). Given a total momentum |P | > |P?|,
define nP ≥ 1 as in (1.18), and assume that Fermi’s condition holds,

γP := 1
2(2π)1−d

ˆ
{k : 1

2
(P−k)2+ω(k)= 1

2
P 2}

|ρ(k)|2
|k−P+∇ω(k)| dHd−1(k) > 0, (1.19)

where Hd−1 stands for the (d−1)th-dimensional Hausdorff measure. (This condition holds
in particular if ρ does not vanish.) Then, the following properties hold.
(i) Absence of embedded mass shell:

For all g 6= 0, the essential spectrum of the fiber Hamiltonian Hg(P ) is purely ab-
solutely continuous below E

(2)
0 (P ) and above E(nP )

0 (P ) away from thresholds: more
precisely, there is a sequence (CP,n)n such that Hg(P ) has purely absolutely continuous
spectrum in

Ig(P ) :=
(
E

(1)
0 (P ) +

√
gCP,1 , E

(2)
0 (P )− gCP,1

)
⋃ ⋃

n≥nP

(
E

(n)
0 (P ) +

√
gCP,n , E

(n+1)
0 (P )− gCP,n

)
.

(ii) Quasi-exponential decay law:
Further assume that for some ν ≥ 0 the interaction kernel ρ belongs to H5+ν(Rd)
with 〈k〉5+ν∇5+νρ ∈ L2(Rd). Then, there is g0 > 0 such that, for all smooth cut-off
functions h supported in Ig0(P ) and equal to 1 in a neighborhood of the uncoupled
eigenvalue 1

2P
2, there holds for all t ≥ 0 and |g| ≤ g0,∣∣∣〈Ω , e−itHg(P )h(Hg(P ))Ω

〉
− e−itzg(P )

∣∣∣ .g0,ρ,h { g2|log g|〈t〉−ν , if ν ≥ 0;

g2〈t〉−(ν−1), if ν ≥ 1;

where the dynamical resonance zg(P ) is given by Fermi’s golden rule,

zg(P ) = 1
2P

2 − g2(θP + iγP ),

where γP > 0 is defined in (1.19) and where the real part θP ∈ R takes the form

θP := (2π)−d p. v.

ˆ
R

(t−1
2P

2)−1

( ˆ
{k : 1

2
(P−k)2+ω(k)=t}

|ρ(k)|2
|k−P+∇ω(k)| dHd−1(k)

)
dt.

(Henceforth, we use the notation .g0,ρ,h for ≤ C× up to some constant C > 0 that
depends on g0 and on controlled norms of ρ, h.)

In particular, for all u◦ ∈ L2(Rd) with Fourier transform compactly supported in the set
{P : |P | > |P?|}, provided that ρ does not vanish and satisfies the requirements of (ii) for
some ν ≥ 0, there holds uniformly for all t ≥ 0,

〈(δx ⊗ Ω), e−itHg(u◦ ⊗ Ω)〉 =

ˆ
Rd
û◦(P )eix·P−itzg(P ) d̄P + og(1),

where og(1) tends to 0 in L∞x (Rd) as g ↓ 0 (depending on ρ, u◦). ♦

We briefly comment on possible extensions and open problems. First note that the above
result gives curiously no access to the spectrum in the energy interval

(
E

(2)
0 (P ), E

(nP )
0 (P )

)
between the two-boson threshold and the last threshold below the embedded eigenvalue:
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although we also expect the same behavior in this interval (away from thresholds), a dif-
ferent type of construction seems to be needed for conjugate operators. Another question
concerns the use of the above Mourre estimate to further investigate asymptotic complete-
ness: the extension of [30, 18] beyond the two-boson threshold in the weak-coupling regime
is postponed to a future work. Finally, a last question concerns the validity of the Mourre
estimate at large coupling: this was solved in [37] below the two-boson threshold and we
may expect our present contribution to give valuable inspiration to get beyond that.

The Nelson model belongs to the class of so-called translation-invariant Pauli–Fierz
models. These also include Fröhlich’s polaron model in solid-state physics [23, 21], as well
as non-relativistic QFT models with vector bosons. Our findings are easily extended to
those settings:
— The polaron model introduced by Fröhlich [23, 21] describes an electron interacting

with lattice vibrations of a polar crystal. These are naturally represented in terms
of a Bose field over a crystalline lattice and we consider the continuum limit of the
latter, thus treating the crystal as a polarizable continuum. The model then takes the
same form as the Nelson model (1.3)–(1.4), where the single-boson dispersion relation
is now taken to be constant, ω(k) = 1, so that the free field Hamiltonian is the number
operator H f = N . We refer to [36] and references therein for a discussion of this model.
Our analysis of the massive Nelson model can be repeated mutatis mutandis in this
setting and we note that several calculations actually reduce dramatically: in particular,
the critical value of the total momentum and the energy thresholds are simply

|P?| =
√

2 and E
(n)
0 (P ) = n.

Corollary 1.3 yields the first rigorous justification of Cherenkov radiation for the polaron
model (see formal discussion in [22, p.227–230]).

— Consider the translation-invariant non-relativistic QFT model for a non-relativistic
quantum particle minimally coupled to a quantized radiation field of relativistic vec-
tor bosons [51, 34]. For d = 3, the single-boson space is then h := L2(R3 × {+,−}),
where +/− stands for boson polarization, and we consider the Hamiltonian

Hα := 1
2

(
p− α

1
2Ax

)2
+ 1⊗H f ,

where α ≥ 0 is the coupling constant, where the vector potential Ax is linear in cre-
ation and annihilation operators, and where the free field Hamiltonian is as before
H f = dΓ(ω) with single-boson dispersion relation ω(k) =

√
m2 + k2. In case of massive

vector bosons m > 0, our analysis of the massive Nelson model is easily adapted to this
other model under suitable regularity assumptions on the interaction kernel defining
the vector potential; we skip the detail.

While we focus here on massive bosons, the case of massless bosons is different and will be
commented at the end of the next section.

1.3. Quantum friction model. We turn to the quantum version [6, 11] of a translation-
invariant Hamiltonian model for friction introduced by Bruneau and De Bièvre [7]. It de-
scribes a non-relativistic quantum particle moving through a translation-invariant medium
consisting of uncoupled quantized vibration fields at each point in space. This model hap-
pens to be substantially simpler to study than the Nelson model, precisely due to the fact
that vibration fields are uncoupled in space, and we shall thus be able to further treat the
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case of massless bosons for this model. In the sequel, we aim at a detailed understanding
of friction effects in the weak coupling regime, improving on previous results in [11].

1.3.1. Description of the model. The state space for the model is given by the product
Hilbert space

H := Hp ⊗Hf , (1.20)
where:
— Hp := L2(Rd) is the state space for the non-relativistic quantum particle, and we denote

respectively by x and p = 1
i∇x the particle position and momentum coordinates;

— Hf is the state space for the quantized vibration fields and takes form of the bosonic Fock
space Hf := Γs(h) constructed on the single-boson space h := L2(Rq × Rd). We work
in momentum representation, with k ∈ Rq standing for the momentum coordinate for
vibrational degrees of freedom, and with ξ ∈ Rd standing for the momentum coordinate
dual to the particle position x.

On this bosonic Fock space Hf , we use standard notation for creation and annihilation
operators {a∗(k, ξ)}(k,ξ)∈Rq×Rd and {a(k, ξ)}(k,ξ)∈Rq×Rd , we use the notation dΓ(A) for the
second quantization of an operator A on h, and in particular N := dΓ(1) is the number
operator. In this setting, we consider the following translation-invariant Hamiltonian,

Hg := Hp ⊗ 1Hf + 1Hp ⊗H f + gΦ(ρx) on H, (1.21)

where:
— the Hamiltonian of the free quantum particle is given by the standard non-relativistic

dispersion relation
Hp := 1

2p
2 on Hp;

— the free field Hamiltonian is given by second quantization

H f := dΓ(ω) =

¨
Rq×Rd

ω(k, ξ) a∗(k, ξ)a(k, ξ) d̄kd̄ξ on Hf ,

where the single-boson dispersion relation reads

ω(k, ξ) := |k|, (1.22)

which corresponds to massless bosons and is naturally independent of ξ as vibration
fields at different values of x are not coupled;

— the real number g is the coupling constant for the particle with the vibration fields;
— the interaction Hamiltonian is given by a translation-invariant field operator

Φ(ρx) :=

¨
Rq×Rd

ρ(k, ξ)
(
a∗(k, ξ)e−iξ·x + a(k, ξ)eiξ·x

)
d̄kd̄ξ, (1.23)

for some real-valued interaction kernel ρ ∈ L2(Rq × Rd) with ρ 6≡ 0.
Our results on this model are restricted to the weak-coupling regime |g| � 1. Regarding
the interaction kernel ρ in (1.23), we shall need strong ultraviolet regularity, but a quite
general infrared behavior is allowed. More precisely, we consider the following assumption,
for some ν ≥ 0,

(Regν) There holds (1 + |k|−
1
2 )(k · ∇k)α(ξ · ∇ξ)β∇γξρ ∈ L2(Rq × Rd) for all α, β, γ ≥ 0

with α+ β + γ ≤ ν.
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Note that this holds for all ν for instance if ρ takes the particular form ρ(k, ξ) = |k|µσ(k, ξ)
for some σ ∈ S(Rq ×Rd) and µ > −1

2(q− 1). This restriction on the infrared parameter µ
is essentially optimal in the sense that it precisely ensures that the interaction Hamilton-
ian Φ(ρx) is relatively bounded with respect to H0.

1.3.2. Translation invariance. As in (1.7) (see also [11, Section 3.2]), we can decompose
the above Hamiltonian Hg as a direct integral

Hg
∼=
ˆ ⊕
Rd
Hg(P ) d̄P on

ˆ ⊕
Rd
Hf d̄P ,

where for all P ∈ Rd the fiber Hamiltonian Hg(P ) takes the form

Hg(P ) := 1
2(P − dΓ(ξ))2 +H f + gΦ(ρ). (1.24)

We recall well-posedness properties of these fiber Hamiltonians. First note that the un-
coupled fiber Hamiltonian H0(P ) is essentially self-adjoint on

Cf := dΓfin(C∞c (Rq × Rd)),

and that its domain is independent of P ,

D := D(H0(P )) = D(H0(0)) = D(dΓ(ξ)2) ∩ D(dΓ(|k|)). (1.25)

Besides, standard estimates ensure that Φ(ρ) is (H f)1/2-bounded provided that the inter-
action kernel satisfies Assumption (Reg0). The Kato–Rellich theorem then ensures that
for all g the coupled fiber Hamiltonian Hg(P ) is self-adjoint on the same domain D and
essentially self-adjoint on the same core Cf .

1.3.3. Energy-momentum spectrum. We start by recalling the structure of the energy-
momentum spectrum of the uncoupled Hamiltonian.

Lemma 1.4 (Spectrum of uncoupled quantum friction model). Consider the quantum fric-
tion model (1.20)–(1.24). For any total momentum P ∈ Rd, the spectrum of the uncoupled
fiber Hamiltonian H0(P ) is given by

σpp(H0(P )) = {1
2P

2}, σac(H0(P )) = [0,∞), σsc(H0(P )) = ∅, (1.26)

where the eigenvalue 1
2P

2 is simple and is associated with the vacuum state Ω. ♦

We emphasize the key difference with the Nelson model: as vibration fields at different
positions in space are not coupled, the propagation speed of bosons in space vanishes and
the spectrum of the uncoupled fiber Hamiltonian is therefore [0,∞) for any total momen-
tum P . In particular, the eigenvalue 1

2P
2 is strictly embedded in absolutely continuous

spectrum whenever P 6= 0. Hence, Cherenkov radiation is expected to occur whenever the
non-relativistic particle has a non-vanishing momentum, which then results in a friction
effect that tends to stop the particle.

1.3.4. Main results. We may now formulate our main results on the quantum friction
model. Our starting point is the following perturbative Mourre commutator result. Note
that our construction only yields a Mourre estimate above 1

18P
2, but this is enough for our

purposes as it covers a neighborhood of the embedded eigenvalue 1
2P

2.
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Theorem 1.5 (Mourre estimate for quantum friction model). Consider the quantum fric-
tion model (1.20)–(1.24). Given a total momentum P 6= 0 and given δ > 0, we can con-
struct a self-adjoint operator AP ;δ in Hf , essentially self-adjoint on Cf , with the following
properties.
(i) The uncoupled fiber Hamiltonian H0(P ) is of class C∞(AP ;δ). Moreover, the uni-

tary group generated by AP ;δ leaves the domain of H0(P ) invariant, and the iterated
commutators adsiAP ;δ

(H0(P )) extend as H0(P )-bounded operators for all s ≥ 0.

(ii) For all ε > 0 and all energy intervals I ⊂
[

1
18P

2 + δ + ε , ∞
)
, the following Mourre

estimate holds with respect to AP ;δ on I,

1I(H0(P )) [H0(P ), iAP ;δ]1I(H0(P )) ≥ ε1I(H0(P ))− P 2ΠΩ,

where ΠΩ is the orthogonal projection on CΩ. In particular, the Mourre estimate is
strict if the interval I does not contain the eigenvalue 1

2P
2.

(iii) The fiber interaction Hamiltonian Φ(ρ) satisfies the following regularity condition: if
the interaction kernel ρ satisfies (Regν) for some ν ≥ 1, then the iterated commutators
adsiAP ;δ

(Φ(ρ)) extend as H0(P )1/2-bounded operators for all 1 ≤ s ≤ ν. ♦

This provides the first Mourre estimate with C∞-regularity for this model. In contrast,
in [11], the authors used the generator of radial translations R := i

2dΓ( k
|k| · ∇k +∇k · k|k|)

as a natural conjugate and were confronted both with the singularity of this operator at
small k and with the dramatic lack of associated regularity: the commutator with H0(P )
is formally

[H0(P ), iR] = N,

which is positive on CΩ⊥ but is not controlled by H0(P ) in the case of massless bosons.
To accommodate this difficulty, the authors of [11] had to appeal to the “singular” Mourre
theory developed in [47, 38, 27, 28, 20], which is precisely meant for this situation but
allows for weaker consequences than the regular theory. In particular, they deduced in [11]
the instability of the embedded mass shell E = 1

2P
2 at weak coupling, but no scattering

resonance description was obtained. In addition, their restriction on the infrared behavior
of the interaction kernel ρ was much stronger than what we impose here in Assump-
tion (Regν). Rather combining Theorem 1.5 above with the full power of regular Mourre
theory, we are led to the following improved description.

Corollary 1.6 (Quantum friction). Consider the quantum friction model (1.20)–(1.24),
and assume that the interaction kernel ρ satisfies Assumption (Reg2). Given a total mo-
mentum P 6= 0, assume that Fermi’s condition holds,

γP := 1
2(2π)1−d

ˆ
|k|≤ 1

2
P 2

ˆ
{ξ : 1

2
(P−ξ)2= 1

2
P 2−|k|}

|ρ(k,ξ)|2√
(P−ξ)2+1

dHd−1(ξ)d̄k > 0, (1.27)

where Hd−1 stands for the (d−1)th-dimensional Hausdorff measure. (This condition holds
in particular if ρ does not vanish.) Then, the following properties hold.
(i) Absence of embedded mass shell:

For all g 6= 0, the coupled fiber Hamiltonian Hg(P ) has purely absolutely continuous
spectrum in

Ig(P ) :=
(

1
18P

2 +
√
gCP , ∞

)
.
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(ii) Quasi-exponential decay law:
Further assume that for some ν ≥ 0 the interaction kernel ρ satisfies Assump-
tion (Reg5+ν). Then, there is g0 > 0 such that, for all smooth cut-off functions h
supported in Ig0(P ) and equal to 1 in a neighborhood of the uncoupled eigenvalue 1

2P
2,

there holds for all t ≥ 0 and |g| ≤ g0,∣∣∣〈Ω , e−itHg(P )h(Hg(P ))Ω
〉
− e−itzg(P )

∣∣∣ .g0,ρ,h { g2|log g|〈t〉−ν , if ν ≥ 0;

g2〈t〉−(ν−1), if ν ≥ 1;

where the dynamical resonance zg(P ) is given by Fermi’s golden rule,

zg(P ) = 1
2P

2 − g2(θP + iγP ),

where γP > 0 is defined in (1.27) and where the real part θP ∈ R takes the form

θP := (2π)−d p. v.

ˆ
R

(t− 1
2P

2)−1

×
( ˆ
|k|≤t

ˆ
{ξ : 1

2
(P−ξ)2=t−|k|

|ρ(k,ξ)|2√
(P−ξ)2+1

dHd−1(ξ)d̄k

)
dt.

In particular, for all u◦ ∈ L2(Rd) with compactly supported Fourier transform, provided
that ρ does not vanish and satisfies the requirements of (ii) for some ν ≥ 0, there holds
uniformly for all t ≥ 0,

〈(δx ⊗ Ω), e−itHg(u◦ ⊗ Ω)〉 =

ˆ
Rd
û◦(P )eix·P−itzg(P ) d̄P + og(1),

where og(1) tends to 0 in L∞x (Rd) as g ↓ 0 (depending on ρ, u◦). ♦

As this result concerns massless bosons, we may wonder whether our constructions could
be adapted to some extent to the massless Nelson model. At the moment, however, we
leave this as an open question. Compared to the quantum friction model, the difficulty
is that for the Nelson model (1.3)–(1.4) the momentum coordinates k and ξ coincide: in
view of our construction (2.15) of the conjugate operator below, we are then essentially
reduced to controlling the commutator

[∑n
j=1 |∇zj | , maxj zj

]
uniformly with respect to n,

which we do not know how to do. Controlling this commutator may actually require to
further adapt our construction of the conjugate operator. For massive bosons, the problem
simplifies drastically as a bound O(n) on this commutator is sufficient, cf. Lemma 3.8.

1.4. Link to random Schrödinger operators. As is well known, e.g. [13, Section 1.3],
[5], or [17, Lemma 5.6], random Schrödinger operators can be viewed as particular instances
of Pauli–Fierz models. This comparison was actually our original motivation for the present
contribution, in link with our previous work [17]. More precisely, given a stochastically
translation-invariant Gaussian field V on Rd, constructed on a probability space Ω, a
Gaussian chaos decomposition of L2(Ω) ensures that the random Schrödinger operator
−1

24+ gV in L2(Rd × Ω) is unitarily equivalent to the translation-invariant Hamiltonian

Hg := 1
2p

2 ⊗ 1Hf + gΦ(ρx) on H = Hp ⊗Hf ,

where Hp := L2(Rd) and Hf := Γs(h) with h := L2(Rd), and where the interaction kernel ρ
is such that ρ ∗ ρ̌ is the covariance function of V . In other words, the action of the
Gaussian field is viewed as the interaction with a bosonic field. Via this isomorphism, the
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fiber decomposition (1.7) for Hg is precisely equivalent to the Floquet–Bloch type fibration
that we introduced in [17] (see also [5]),

Hg
∼=
ˆ ⊕
Rd
Hg(P ) d̄P, where Hg(P ) := 1

2(P − k)2 + gΦ(ρ) on Hf .

Compared to QFT models studied in the present work, the key difficulty is that degrees of
freedom associated with the random potential V do not evolve in time, hence the dispersion
relation for the corresponding bosons is trivial, ω = 0, and the free field Hamiltonian
vanishes. This makes the study of random Schrödinger operators particularly intricate from
this perspecive: the perturbation Φ(ρ) is not relatively bounded with respect toH0(P ), and
its commutators with any Mourre conjugate operator for H0(P ) would not be relatively
bounded either. In other words, Φ(ρ) is not a regular perturbation in the sense of Mourre’s
theory. In [17], we proceeded by truncating Φ(ρ) to state spaces with a bounded number of
bosons, depending on the size of the coupling constant g, and this allowed us to deduce a
scattering resonance description at least up to the kinetic timescale t . g−2. As explained
in [17], if one had ideal estimates on the number operator along the dynamics, this could
be extended to t� g−4. Such improvements would be of tremendous interest in link with
the quantum diffusion conjecture.

2. Quantum friction model

This section is devoted to the proof of our main results on the quantum friction model
at weak coupling, cf. (1.20)–(1.24). We start with the construction of a suitable conjugate
operator and with the proof of the Mourre estimate, thus establishing Theorem 1.5, before
turning to consequences on the metastability of the embedded mass shell.

2.1. Construction of conjugate operator. The uncoupled fiber Hamiltonian splits as
a sum of two multiplication operators,

H0(P ) = 1
2(P − dΓ(ξ))2 + dΓ(|k|),

where 1
2(P − dΓ(ξ))2 only involves the momentum coordinate ξ ∈ Rd dual to the spatial

position and where dΓ(|k|) only involves the momentum coordinate k ∈ Rq for vibrational
degrees of freedom. We shall similarly construct a conjugate operator as a sum

AP = BP +D1, (2.1)

where BP acts only on the variable ξ, and D1 on the variable k. The commutator then
splits formally as

[H0(P ), iAP ] = 1
2 [(P − dΓ(ξ))2, iBP ] + [dΓ(|k|), iD1],

so we are reduced to proving a Mourre estimate for both contributions separately. For the
second contribution, dΓ(|k|), recalling (1.1), a natural choice for the conjugate D1 is the
second quantization of the generator of dilations in the k-direction,

D1 := dΓ(d1), d1 := i
2 (k · ∇k +∇k · k) , (2.2)

which satisfies the following commutator identity,

[dΓ(|k|), iD1] = dΓ(|k|). (2.3)

It remains to construct a suitable conjugate BP for (P − dΓ(ξ))2. We start by briefly
underlining the difficulty and motivating our unusual construction.
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2.1.1. Motivation for construction of BP . Recalling (1.1), a natural choice is to con-
sider the generator of dilations in the ξ-direction around the minimizer of the symbol
of (P − dΓ(ξ))2. On the n-boson state space, the symbol takes the form

(ξ1, . . . , ξn) 7→
(
P −

n∑
j=1

ξj

)2
,

which attains a minimum at
ξ1 = . . . = ξn = 1

nP, (2.4)

and we are then led to defining the following tentative conjugate operator on the n-boson
state space,

n∑
j=1

i
2

(
(ξj − 1

nP ) · ∇ξj +∇ξj · (ξj − 1
nP )

)
=

n∑
j=1

i
2

(
ξj · ∇ξj +∇ξj · ξj

)
− 1

n

n∑
j=1

iP · ∇ξj .

On the Fock space, this means

BP := D2 −N−
1
2 dΓ(iP · ∇ξ)N−

1
2 , (2.5)

in terms of the standard generator of dilations in the ξ-direction,

D2 := dΓ(d2), d2 := i
2(ξ · ∇ξ +∇ξ · ξ), (2.6)

where we have implicitly defined the pseudo-inverse N−
1
2 := Π̄ΩN

− 1
2 Π̄Ω with some abuse

of notation, recalling that Π̄Ω = 1 − ΠΩ is the orthogonal projection on CΩ⊥. For this
choice, as expected from (1.2), we obtain

1
2 [(P − dΓ(ξ))2, iBP ] = Π̄Ω(P − dΓ(ξ))2Π̄Ω

= (P − dΓ(ξ))2 − P 2ΠΩ, (2.7)

which has exactly the desired behavior: indeed, combined with (2.3), it yields a Mourre
estimate for H0(P ) above the bottom of the spectrum.

Although this might look like the end of the story, this choice BP does actually not suit
our purposes as it behaves badly with respect to the fiber interaction Hamiltonian Φ(ρ): a
direct computation shows that the commutator [Φ(ρ), iBP ] is not even relatively bounded
when restricted to any fixed n-boson state space. The core of the problem is that BP is not
a second-quantization operator due to its dependence on the number operator, cf. (2.5),
which is a direct consequence of the fact that the minimizer of the energy symbol de-
pends the number n of bosons, cf. (2.4). While this issue seems unavoidable, we note
that BP is actually not the only possible choice. On the n-boson state space, the operator
N−1/2dΓ(iP · ∇ξ)N−1/2 in the definition (2.5) of BP amounts to the arithmetic average
1
n

∑n
j=1 iP ·∇ξj of coordinates {iP · ∇ξj}1≤j≤n, which we shall replace by the signed max-

imum of coordinates. This highly non-standard choice is directly inspired by our previous
work [17] and we show that it does essentially not change the commutator relation (2.7),
while behaving much better with the field operator Φ(ρ). The reason for this is intuitively
clear: as expressed in Lemma 2.2 below, the maximum of a set coordinates satisfies better
‘locality’ properties with respect to creation and annihilation of coordinates than their
arithmetic average.
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2.1.2. Signed maximum and regularization. We turn to the construction of the suitable
notion of signed maximum of coordinates {iP · ∇ξj}1≤j≤n on the n-boson state space,
which will be used to replace the arithmetic mean 1

n

∑n
j=1 iP · ∇ξj in (2.5). First, instead

of momentum representation on h, we use position representation: we denote by y := i∇ξ
the position coordinate dual to ξ, and we set z := P · y for the coordinate in the direction
of the total momentum P . For all n ≥ 1, we define the function mn : Rn → R as the
signed maximum of coordinates: for all z1, . . . , zn ∈ R, we set

mn(z1, . . . , zn) := zj0

where the index j0 is chosen such that |zj0 | = maxj |zj |. This is obviously well-defined
on Rn up to a null set. Equivalently, we can write

mn(z1, . . . , zn) :=
(
maxj |zj |

)
sgn rn(z1, . . . , zn), (2.8)

rn(z1, . . . , zn) := maxj zj + minj zj ,

where we take e.g. the convention sgn(0) = 0. This function is clearly symmetric with
respect to the variables z1, . . . , zn and has the following property.

Lemma 2.1. For all n ≥ 1, the function mn is continuous on Rn \ Sn, where Sn stands
for the hypersurface

Sn := r−1
n {0} =

{
z ∈ Rn : ∃j0 6= j1 such that zj0 = −zj1 and |zj0 | = maxj |zj |

}
. (2.9)

In addition, there holds in the distributional sense
n∑
j=1

∂jmn = 1 + |maxj zj −minj zj |HSn ≥ 1, (2.10)

where HSn stands for the (n− 1)th-dimensional Hausdorff measure on Sn. ♦

Proof. The continuity of mn is clear outside the zero locus Sn of rn, and we turn to the sec-
ond part of the statement. On Rn\Sn, we have mn(z1, . . . , zn) = zj0 with |zj0 | = maxj |zj |,
and thus

∑
j ∂jmn = 1. It remains to examine the jump of mn on Sn. Given a point

z := (z1, . . . , zn) ∈ Rn, we may assume z1 = minj zj and z2 = maxj zj up to permuting
coordinates, and we consider the line {z(t) := z + t(1, . . . , 1) : t ∈ R}. In view of (2.9), we
note that this line intersects Sn at a single point: z(t) ∈ Sn if and only if t = −1

2(z1 + z2).
The jump of mn at this point along this line is easily checked to be |z1 − z2|, and the
conclusion follows. �

Next, we regularize mn to smoothen the singular part of the derivative (2.10). We start
with the following reformulation of mn,

mn(z1, . . . , zn) = 1
2(maxj zj + minj zj) + 1

2(maxj zj −minj zj) sgn(max zj + minj zj),

where only the sign function needs to be regularized. Given δ > 0, we choose a smooth
odd function χδ : R→ [−1, 1] such that

χδ|(−∞,−1] = −1, χδ|[1,∞) = 1, 0 ≤ χ′δ ≤ 1 + δ pointwise,
χδ(s) ≤ s for −1 ≤ s ≤ 0, and χδ(s) ≥ s for 0 ≤ s ≤ 1, (2.11)
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and we then define the following regularization of mn,

m̃n;δ(z1, . . . , zp) := 1
2(maxj zj + minj zj)

+ 1
2(maxj zj −minj zj)χδ

(
maxj zj+minj zj

1+maxj zj−minj zj

)
, (2.12)

which is obviously globally well-defined and continuous.1 The denominator in the argument
of χδ is easily understood: in order to make the derivative (2.10) uniformly bounded, it is
not enough to regularize the sign function in a fixed neighborhood of Sn as the derivative
would still produce an unbounded term due to the multiplication by maxj zj −minj zj . In
view of properties of χδ, a direct computation yields, instead of (2.10),

1 ≤
n∑
j=1

∂jm̃n;δ ≤ 2 + δ, (2.13)

and in addition, for all r ≥ 1,∣∣∣∣( n∑
j=1

∂j

)r
m̃n;δ

∣∣∣∣ .χδ,r 1,

∣∣∣∣( n∑
j=1

zj∂j

)r
m̃n;δ − m̃n;δ

∣∣∣∣ .χδ,r 1. (2.14)

In particular, note that m̃n;δ is smooth in the direction (1, . . . , 1). We also establish the
following locality property: it constitutes the main difference with respect to arithmetic av-
erages of coordinates (z1, . . . , zn) 7→ 1

n

∑n
j=1 zj , and it will be key to estimate commutators

with field operators.

Lemma 2.2. For all n ≥ 0, there holds for all z, z1, . . . , zn ∈ R,∣∣m̃n+1;δ(z, z1, . . . , zn)− m̃n;δ(z1, . . . , zn)
∣∣ ≤ 2|z|+ 1. ♦

Proof. As |χδ| ≤ 1, the definition of m̃n;δ ensures

|m̃n;δ(z1, . . . , zn)| ≤ maxj |zj |,

which trivially yields the conclusion in case maxj |zj | ≤ |z|∨ 1
2 . It thus remains to consider

the case maxj |zj | > |z| ∨ 1
2 . Up to permuting coordinates, we can assume z1 = minj zj

and z2 = maxj zj . In the case z1 ≤ z ≤ z2, we simply find

m̃n+1;δ(z, z1, . . . , zn) = m̃n;δ(z1, . . . , zn),

and the conclusion follows. It remains to treat the case z1 ≤ z2 ≤ z, while the symmetric
case z ≤ z1 ≤ z2 is similar. Given z1 ≤ z2 ≤ z, the assumption maxj |zj | > |z| ∨ 1

2

implies z1 < −|z| ∨ 1
2 , and thus in particular z2+z1

1+z2−z1 ≤
z+z1

1+z−z1 ≤ 0. In addition, there
holds χδ

( y+z1
1+y−z1

)
= −1 whenever z1 ≤ y ≤ −1

2 . Using this together with properties of χδ,

1A similar construction was first used in our previous work [17]. Note however the following slight
mistake in [17, Section 5.6]: we forgot to add 1 in the denominator of the argument of χδ, which then
actually poses regularity issues at the origin in Rn.
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we may then estimate∣∣m̃n+1;δ(z, z1, . . . , zn)− m̃n;δ(z1, . . . , zn)
∣∣

= 1
2(z − z2)

(
1 + χδ

(
z2+z1

1+z2−z1

))
+ 1

2(z − z1)
(
χδ
(

z+z1
1+z−z1

)
− χδ

(
z2+z1

1+z2−z1

))
≤ 1

2(z − z2)
(

1 + χδ
(

z2+z1
1+z2−z1

))
+ 1

2(z − z1)
(

1 + χδ
(

z+z1
1+z−z1

))
≤ 1

2(z − z2)1z2≥− 1
2

+ 1
2(z − z1)

(
1 + z+z1

1+z−z1

)
1z≥− 1

2

≤ 3
2(|z|+ 1

2),

as claimed. �

2.1.3. Back to conjugate operator. With the above at hand, we can turn to the suitable
replacement for the second term, N−1/2dΓ(iP · ∇ξ)N−1/2, in the tentative choice (2.5) of
the conjugate operator. For all n ≥ 0, we define the operator MP,n;δ on the n-boson state
space as the multiplication with the function

(k1, y1, . . . , kn, yn) 7→ m̃n;δ(P · y1, . . . , P · yn),

using position representation y = i∇ξ on h, and we define

MP ;δ =
∞⊕
n=1

MP,n;δ on Hf =
∞⊕
n=0

Γ(n)
s (h).

Coming back to (2.1) and (2.5), we then define the following modified conjugate operator,

AP ;δ := 2D1 +D2 − 2
3+δMP ;δ on Hf , (2.15)

where we recall that D1 and D2 stand for the generators of dilations in the k-direction and
the ξ-direction, respectively,

D1 = dΓ(d1), d1 = i
2(k · ∇k +∇k · k),

D2 = dΓ(d2), d2 = i
2(ξ · ∇ξ +∇ξ · ξ).

The reason for the factor 2
3+δ in front of MP ;δ in (2.15) is the following: the computation

of the relevant commutators involves the derivative
∑n

j=1 ∂jm̃n;δ, which in view of the
regularization m̃n;δ of mn is not equal to 1 almost everywhere but takes values in the
whole interval [1, 2 + δ] close to the hypersurface Sn (compare (2.10) to (2.13)). Symbols
are thus deformed in the computation of commutators, and the choice 2D1+D2−MP would
actually fail to provide a Mourre estimate close to the eigenvalue 1

2P
2. Definition (2.15) is

precisely meant to best overcome this issue.
By definition, the operator AP ;δ commutes with the number operator. Given its action

on n-boson state space, it is clearly essentially self-adjoint on Cf , and we show that it
generates an explicit unitary group that preserves the domain of fiber Hamiltonians.

Lemma 2.3. The operator AP ;δ is essentially self-adjoint on Cf and its closure generates
a unitary group {eitAP ;δ}t∈R on Hf , which commutes with the number operator and has the
following explicit action: for all n ≥ 1 and un ∈ Γ

(n)
s (h),(

eitAP ;δun
)
(k1, y1, . . . , kn, yn) = exp

(
− 2i

3+δ

ˆ t

0
m̃n;δ(P · esy1, . . . , P · esyn) ds

)
× etn( d

2
−q)un(e−2tk1, e

ty1, . . . , e
−2tkn, e

tyn),
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where on h = L2(Rq×Rd) we use momentum representation in the first variable and position
representation in the second. In particular, the domain D of fiber Hamiltonians (1.25) is
invariant under this group action. ♦

Proof. For all n ≥ 1, consider the family {U tP,n;δ}t∈R of operators on Γ
(n)
s (h), defined by

the above formula,

(U tP,n;δun)(k1, y1, . . . , kn, yn) := exp

(
− 2i

3+δ

ˆ t

0
m̃n;δ(P · esy1, . . . , P · esyn) ds

)
× etn( d

2
−q) un(e−2tk1, e

ty1, . . . , e
−2tkn, e

tyn).

This defines a unitary group on Γ
(n)
s (h). In addition, for all un ∈ C∞c (Rq × Rd)⊗sn, we

note that the following convergence holds in Γ
(n)
s (h),

lim
t↓0

1
t (U

t
P,n;δun − un)

= −
n∑
j=1

(kj · ∇kj +∇kj · kj)un + 1
2

n∑
j=1

(yj · ∇yj +∇yj · yj)un − 2i
3+δMP,n;δun,

where the right-hand side coincides with iAP ;δun since we have in position representation

d2 = i
2(ξ · ∇ξ +∇ξ · ξ) = 1

2i(y · ∇y +∇y · y).

This proves that {U tP,n;δ}t∈R is a unitary C0-group on Γ
(n)
s (h) and that its self-adjoint

generator coincides with AP ;δ on its core C∞c (Rq × Rd)⊗sn. The conclusion follows. �

Next, we show the relative boundedness of commutators of the uncoupled fiber Hamilton-
ianH0(P ) with the above-constructed conjugate operatorAP ;δ. Combined with Lemma 2.3,
this actually proves Theorem 1.5(i), further noting that the C∞(AP ;δ)-regularity property
follows by applying the sufficient criterion in Lemma A.3.

Lemma 2.4. For all s ≥ 1, the s-th iterated commutator adsiAP ;δ
(H0(P )) extends as an

H0(P )-bounded self-adjoint operator with domain D = D(H0(P )). ♦

Proof. For all n ≥ 1, we define the operators M ′P,n;δ and M
′′
P,n;δ on Γ

(n)
s (h) as the multipli-

cations with the functions

(k1, y1, . . . , kn, yn) 7→
(∑n

j=1 ∂jm̃n;δ

)
(P · y1, . . . , P · yn),

(k1, y1, . . . , kn, yn) 7→
(∑n

j,l=1 ∂j,lm̃n;δ

)
(P · y1, . . . , P · yn),

respectively, and we set

M ′P ;δ :=

∞⊕
n=1

M ′P,n;δ, M ′′P ;δ :=

∞⊕
n=1

M ′′P,n;δ, on Hf =

∞⊕
n=0

Γ(n)
s (h).

A direct computation yields in these terms

[dΓ(∇y),MP ;δ] = PM ′P ;δ, [dΓ(∇y),M ′P ;δ] = PM ′′P ;δ.
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By definition (2.15) of AP ;δ, recalling that ξ = −i∇y, we compute in the sense of forms
on Cf ,

[H0(P ), iAP ;δ] = 2dΓ(|k|)− dΓ(ξ) · (P − dΓ(ξ))

+ 1
3+δP ·

(
(P − dΓ(ξ))M ′P ;δ +M ′P ;δ(P − dΓ(ξ))

)
,

which can be reorganized as

[H0(P ), iAP ;δ] = 2dΓ(|k|) + (P − dΓ(ξ))2

+ 1
3+δP ·

(
(P − dΓ(ξ))(M ′P ;δ − 3+δ

2 ) + (M ′P ;δ − 3+δ
2 )(P − dΓ(ξ))

)
. (2.16)

Alternatively, further using [dΓ(∇y),M ′P ;δ] = PM ′′P ;δ, and recognizing H0(P ) in the right-
hand side, we get

[H0(P ), iAP ;δ] = 2H0(P ) + 2
3+δ (M ′P ;δ − 3+δ

2 )P · (P − dΓ(ξ)) + i
3+δP

2M ′′P ;δ. (2.17)

As (2.13) yields 1 ≤M ′P ;δ ≤ 2 + δ and |M ′′P ;δ| .χδ 1, we find for all u ∈ Cf ,∥∥ 2
3+δ (M ′P ;δ − 3+δ

2 )P · (P − dΓ(ξ))u
∥∥+

∥∥ i
3+δP

2M ′′P ;δu
∥∥

.χδ |P |‖(P − dΓ(ξ))u‖+ P 2‖u‖

≤ |P |‖H0(P )
1
2u‖+ P 2‖u‖.

Combined with (2.17), this shows that [H0(P ), iAP ;δ] is equal to 2H0(P ) up to an in-
finitesimal perturbation. By the Kato–Rellich theorem, we deduce that the commuta-
tor adiAP ;δ

(H0(P )) = [H0(P ), iAP ;δ] extends as an H0(P )-bounded self-adjoint operator
with domain D = D(H0(P )). Similarly computing iterated commutators and appealing
to (2.14), the conclusion easily follows; we skip the detail. �

2.2. Mourre estimate. We turn to the proof of the Mourre estimate for H0(P ). This
amounts to showing that the commutator identity (2.7) is essentially preserved for the
modified conjugate operator (2.15). Due to the deformation of commutators, however,
we only manage to cover energy intervals above 1

18P
2. Up to renaming ε, δ, this proves

Theorem 1.5(ii).

Lemma 2.5. For all ε > 0, the commutator [H0(P ), iAP ;δ] satisfies the following Mourre
estimate on Jε :=

[
(1+δ

3+δ + ε)2 1
2P

2,∞
)
,

1Jε(H0(P ))[H0(P ), iAP ;δ]1Jε(H0(P )) ≥ ε(1
3 + ε)P 21Jε(H0(P ))− P 2ΠΩ. ♦

Proof. We split the proof into two steps.

Step 1. Proof that for all α > 0,

[H0(P ), iAP ;δ] ≥ Π̄Ω

(
2(1− 1

2α)H0(P )− α
2

(
1+δ
3+δ

)2
P 2
)

Π̄Ω. (2.18)

As the vacuum state Ω is an eigenvector of H0(P ), it belongs to the kernel of the com-
mutator [H0(P ), iAP ;δ], and it suffices to establish this lower bound (2.18) on Cf ∩ CΩ⊥.
Given u ∈ Cf ∩ CΩ⊥, starting from identity (2.16), we can bound〈

u, [H0(P ), iAP ;δ]u
〉
≥ 2〈u,dΓ(|k|)u〉+ 〈u, (P − dΓ(ξ))2u〉

− 2
3+δ |P |‖(P − dΓ(ξ))u‖‖(M ′P ;δ − 3+δ

2 )u‖,
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and thus, recalling that (2.13) implies 1 ≤M ′P ;δ ≤ 2 + δ, we get〈
u, [H0(P ), iAP ;δ]u

〉
≥ 2〈u,dΓ(|k|)u〉+ 〈u, (P − dΓ(ξ))2u〉 − 1+δ

3+δ |P |‖(P − dΓ(ξ))u‖‖u‖.
For all α > 0, Young’s inequality then yields〈
u, [H0(P ), iAP ;δ]u

〉
≥ 2〈u,dΓ(|k|)u〉+ (1− 1

2α)〈u, (P − dΓ(ξ))2u〉 − α
2

(
1+δ
3+δ

)2
P 2‖u‖2

≥ 2(1− 1
2α)〈u,H0(P )u〉 − α

2

(
1+δ
3+δ

)2
P 2‖u‖2,

that is, (2.18).

Step 2. Conclusion.
Given E ≥ 0, applying (2.18) to 1[E,∞)(H0(P ))u, we get〈

1[E,∞)(H0(P ))u, [H0(P ), iAP ;δ]1[E,∞)(H0(P ))u
〉

≥
(

2E(1− 1
2α)− α

2

(
1+δ
3+δ

)2
P 2
)
‖1[E,∞)(H0(P ))u‖2 − P 2‖ΠΩu‖2.

Hence, optimizing with respect to α > 0,〈
1[E,∞)(H0(P ))u, [H0(P ), iAP ;δ]1[E,∞)(H0(P ))u

〉
≥
√

2E
(√

2E − 1+δ
3+δ |P |

)
‖1[E,∞)(H0(P ))u‖2 − P 2‖ΠΩu‖2,

and the stated Mourre estimate follows. �

2.3. Regularity of the interaction. We turn to the regularity of the fiber interaction
Hamiltonian Φ(ρ) with respect to AP ;δ, thus establishing Theorem 1.5(iii). While this
result would fail for the naïve choice (2.5) of the conjugate, it crucially requires our special
definition of regularized signed maximum, and the proof builds mainly on Lemma 2.2.
Lemma 2.6. Let the interaction kernel ρ satisfy Assumption (Regν) for some ν ≥ 1. Then,
for all 0 ≤ s ≤ ν, the s-th iterated commutator adsiAP ;δ

(Φ(ρ)) extends as a dΓ(|k|)1/2-
bounded self-adjoint operator. ♦

Proof. We split the proof into two steps.

Step 1. Analysis of the first commutator.
By definition (2.15) of AP ;δ, the first commutator can be split as

[Φ(ρ), iAP ;δ] = 2[Φ(ρ), idΓ(d1)] + [Φ(ρ), idΓ(d2)]− 2
3+δ [Φ(ρ), iMP ;δ], (2.19)

and thus, as the first two terms involve second-quantization operators,

[Φ(ρ), iAP ;δ] = −2Φ(id1ρ)− Φ(id2ρ)− 2
3+δ [Φ(ρ), iMP ;δ].

Standard estimates ensure that the first two terms Φ(id1ρ) and Φ(id2ρ) are dΓ(|k|)1/2-
bounded provided that (1 + |k|−1/2)d1ρ and (1 + |k|−1/2)d2ρ belong to L2(Rq × Rd), hence
in particular provided that ρ satisfies Assumption (Reg1).

It remains to estimate the commutator [Φ(ρ), iMP ;δ]. As Φ(ρ) = a∗(ρ) + a(ρ), it actually
suffices by symmetry to estimate [a∗(ρ), iMP ;δ]. We recall the standard definition of the
creation operator: for all n ≥ 0 and un ∈ Γ

(n)
s (h),(

a∗(ρ)un
)(

(kl, ξl)1≤l≤n+1

)
= 1√

n+1

n+1∑
j=1

ρ(kj , ξj)un
(
(kl, ξl)l∈{1,...,n+1}\{j}

)
,
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or alternatively, using position representation y = i∇ξ in the second variable,

(
a∗(ρ)un

)(
(kl, yl)1≤l≤n+1

)
= 1√

n+1

n+1∑
j=1

ρ̃(kj , yj)un
(
(kl, yl)l∈{1,...,n+1}\{j}

)
,

where ρ̃ stands for the partial inverse Fourier transform ρ̃(k, y) :=
´
Rd e

iy·ξρ(k, ξ) d̄ξ. In
these terms, the commutator with MP ;δ takes the explicit form(

[a∗(ρ), iMP ;δ]un

)(
(kl, yl)1≤l≤n+1

)
= 1√

n+1

n+1∑
j=1

(
im̃n;δ

(
(P · yl)l∈{1,...,n+1}\{j}

)
− im̃n+1;δ

(
(P · yl)1≤l≤n+1

))
× ρ̃(kj , yj)un

(
(kl, yl)l∈{1,...,n+1}\{j}

)
. (2.20)

Appealing to Lemma 2.2 to estimate the difference between m̃n;δ and m̃n+1;δ, we deduce∣∣[a∗(ρ), iMP ;δ]un
∣∣ ≤ 2|P |ã∗(|yρ̃|)|un|+ ã∗(|ρ̃|)|un|,

where we use the short-hand notation ã∗(σ̃) := a∗(σ). Standard estimates then entail that
the commutator [a∗(ρ), iMP ;δ] is dΓ(|k|)1/2-bounded provided that (1 + |k|−1/2)yρ̃ belongs
to L2(Rq×Rd). This is equivalent to requiring that (1+|k|−1/2)∇ξρ belongs to L2(Rq×Rd),
which holds in particular provided that ρ satisfies (Reg1). The conclusion follows.

Step 2. Analysis of iterated commutators.
As in (2.19), we start by decomposing the commutator with iAP ;δ in terms of commutators
with iD1, iD2, and iMP ;δ. Upon iteration, we are then led to estimating products of adiD1 ,
adiD2 , and adiMP ;δ

, applied to Φ(ρ) = a∗(ρ) +a(ρ). In line with (2.20), we argue that such
expressions are explicit and thus easily estimated. By symmetry, as in Step 1, it suffices
to consider commutators applied to a∗(ρ). Iterating (2.20), we find for all s ≥ 0,(

adsiMP ;δ
(a∗(ρ))un

)(
(kl, yl)1≤l≤n+1

)
= 1√

n+1

n+1∑
j=1

(
im̃n;δ

(
(P · yl)l∈{1,...,n+1}\{j}

)
− im̃n+1;δ

(
(P · yl)1≤l≤n+1

))s
× ρ̃(kj , yj)un

(
(kl, yl)l∈{1,...,n+1}\{j}

)
. (2.21)

Further taking the commutator with iD1 = idΓ(d1) and iD2 = idΓ(d2), we easily find

adiD1

(
adsiMP ;δ

(a∗(ρ))
)

= adsiMP ;δ

(
a∗(k · ∇kρ)

)
, (2.22)

adiD2

(
adsiMP ;δ

(a∗(ρ))
)

= adsiMP ;δ

(
a∗
(
(ξ · ∇ξ − s)ρ

))
− s adiRP ;δ

(
ads−1

iMP ;δ

(
a∗(ρ)

))
,

where the operator RP ;δ in the last term is defined as follows: for all n ≥ 1, we set

r̃n;δ(z1, . . . , zn) :=
∑n

j=1 zj∂jm̃n;δ − m̃n;δ,

we define the operator RP,n;δ on Γ
(n)
s (h) as the multiplication with the function

(k1, y1, . . . , kn, yn) 7→ r̃n;δ(P · y1, . . . , P · yn),

and we set RP ;δ :=
⊕∞

n=1RP,n;δ on Hf . In view of (2.14), the function r̃n;δ is bounded uni-
formly in n, and the term involving adiRP ;δ

in (2.22) can thus be viewed as a better-behaved
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lower-order remainder. Up to such a remainder, identities (2.22) show that products of
adiD1 , adiD2 , and adiMP ;δ

, when applied to a∗(ρ), can be reduced to powers of adiMP ;δ
up

to transforming ρ. The conclusion easily follows from this observation and we skip the
detail. �

2.4. Consequences of Mourre estimate. Given a total momentum P 6= 0, we turn to
the proof of Corollary 1.6. By items (i) and (iii) in Theorem 1.5, the sufficient criterion
in Lemma A.3 ensures that the coupled fiber Hamiltonian Hg(P ) is of class C∞(AP ;δ) for
all g. Next, by Theorem 1.5(iii), for all ε > 0, Lemma A.6 allows to infer that Hg(P )
satisfies a Mourre estimate with respect to AP ;δ on the energy interval(

1
18P

2 + δ + ε+ gCP
ε , ∞

)
,

for some constant CP . Taking δ arbitrarily small and optimizing in ε, we deduce thatHg(P )
satisfies a Mourre estimate on any compact subinterval of

JP,g :=
(

1
18P

2 +
√
gCP , ∞

)
.

Moreover, the Mourre estimate is strict outside KP,g :=
[

1
2P

2−gCP , 1
2P

2 +gCP
]
. We may

then appeal to Theorem A.5, which states that Hg(P ) has no singular spectrum and at
most a finite number of eigenvalues in JP,g, and has no eigenvalue in JP,g \KP,g. In order to
exclude the existence of eigenvalues in KP,g, we appeal to Theorem A.7, which states the
instability of the uncoupled eigenvalue 1

2P
2 provided that Fermi’s condition (A.8) holds.

Altogether, this proves item (i) of Corollary 1.6, and item (ii) follows by further applying
Theorem A.8. It remains to make Fermi’s condition (A.8) more explicit for the model at
hand, which is the purpose of the following lemma (see also [11, Lemma 6.7]).

Lemma 2.7. For all P 6= 0, we have

lim
ε↓0

〈
Ω , Φ(ρ)Π̄Ω

(
H0(P )− 1

2P
2 − iε

)−1
Π̄ΩΦ(ρ)Ω

〉
= (2π)−d p. v.

ˆ ∞
0

(t− 1
2P

2)−1

( ˆ
|k|≤t

ˆ
{ξ : 1

2
(P−ξ)2=t−|k|}

|ρ(k,ξ)|2√
(P−ξ)2+1

dHd−1(ξ)d̄k

)
dt

+ i
2(2π)1−d

ˆ
|k|≤ 1

2
P 2

ˆ
{ξ : 1

2
(P−ξ)2= 1

2
P 2−|k|}

|ρ(k,ξ)|2√
(P−ξ)2+1

dHd−1(ξ)d̄k,

where Hd−1 stands for the (d − 1)th-dimensional Hausdorff measure. In particular, the
imaginary part is positive if ρ does not vanish. ♦

Proof. For any ε > 0, we compute〈
Ω , Φ(ρ)Π̄Ω

(
H0(P )− 1

2P
2 − iε

)−1
Π̄ΩΦ(ρ)Ω

〉
=

〈
a∗(ρ)Ω ,

(
H0(P )− 1

2P
2 − iε

)−1
a∗(ρ)Ω

〉
=

¨
Rq×Rd

|ρ(k, ξ)|2
(
H

(1)
0 (P ; k, ξ)− 1

2P
2 − iε

)−1
d̄kd̄ξ,
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where H(1)
0 (P ; k, ξ) := 1

2(P − ξ)2 + |k| is the symbol of H0(P ) on the single-boson state
space. As this symbol is Lipschitz continuous, the coarea formula yields〈

Ω , Φ(ρ)Π̄Ω

(
H0(P )− 1

2P
2 − iε

)−1
Π̄ΩΦ(ρ)Ω

〉
= (2π)−q−d

ˆ ∞
0

(
t− 1

2P
2−iε

)−1
( ˆ
{(k,ξ):H(1)

0 (P ;k,ξ)=t}

|ρ(k,ξ)|2

|∇k,ξH
(1)
0 (P ;k,ξ)|

dHq+d−1(k, ξ)

)
dt,

whereHq+d−1 stands for the (q+d−1)th-dimensional Hausdorff measure and where we note
that the integrand is summable. As |∇k,ξH

(1)
0 (P ; k, ξ)| =

√
(P − ξ)2 + 1 is non-degenerate,

the conclusion easily follows from the Plemelj formula. �

3. Translation-invariant massive Nelson model

This section is devoted to the proof of our main results on the translation-invariant
Nelson model with massive bosons at small coupling, cf. (1.3)–(1.9). We start by describ-
ing the energy-momentum spectrum for uncoupled Hamiltonians, in particular proving
Lemma 1.1, and we establish some important properties of energy thresholds. Next, we
turn to the construction of a conjugate operator in the weak-coupling regime, thus estab-
lishing Theorem 1.2. As explained in the introduction, a suitable modification of our first
choice of conjugate will be needed to ensure C∞-regularity. The modification procedure is
presented in Section 3.4 below, further building on our constructions in Section 2.1, and
we believe that it is of independent interest for other massive QFT models.

3.1. Spectrum of uncoupled Hamiltonians. We start with the proof of Lemma 1.1,
that is, the characterization of the spectrum of uncoupled fiber Hamiltonians. More pre-
cisely, we establish the following result.

Lemma 3.1. Consider the translation-invariant Nelson model with massive bosons m > 0,
cf. (1.3)–(1.9). Given a total momentum P ∈ Rd, the uncoupled fiber Hamiltonian H0(P )
commutes with the number operator N and thus splits as a direct sum (1.14). There holds

H0(P )Ω = 1
2P

2Ω,

and for all n ≥ 1 the restriction H(n)
0 (P ) = H0(P )|

Γ
(n)
s (h)

satisfies

σac

(
H

(n)
0 (P )

)
=
[
E

(n)
0 (P ),∞

)
, σpp

(
H

(n)
0 (P )

)
= σsc

(
H

(n)
0 (P )

)
= ∅, (3.1)

where the n-boson energy threshold E(n)
0 (P ) is given by

E
(n)
0 (P ) := 1

2c(n, P )2 +
√
m2n2 + (|P | − c(n, P ))2, (3.2)

in terms of the unique solution c(n, P ) ∈ [0, 1) of the implicit equation

c(n, P ) =
|P | − c(n, P )√

m2n2 + (|P | − c(n, P ))2
. (3.3)

♦

Proof. In view of (1.14), it suffices to analyze separately the spectrum of restrictions on
each n-boson state space. For n ≥ 1, the restriction H(n)

0 (P ) is a multiplication operator
in momentum coordinates, with symbol

H
(n)
0 (P ; k1, . . . , kn) := 1

2

(
P −

n∑
j=1

kj

)2
+

n∑
j=1

ω(kj). (3.4)
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Its spectrum is thus absolutely continuous and coincides with the essential image of this
symbol, which in this case obviously takes the form (3.1) with

E
(n)
0 (P ) := min

k1,...,kn∈Rd
H

(n)
0 (P ; k1, . . . , kn).

A straightforward computation shows that this minimum is attained at

k1 = . . . = kn = k?(n, P ) := 1
n

(
|P | − c(n, P )

)
P
|P | , (3.5)

where c(n, P ) ∈ [0, 1) is the unique solution of equation (3.3). The minimum of the symbol
is thus indeed given by (3.2). �

Next, we establish some fine properties of energy thresholds. It follows from defini-
tions (3.2)–(3.3) that P 7→ c(n, P ) and P 7→ E

(n)
0 (P ) are radially symmetric for all n ≥ 1.

In addition, we find

c(n, 0) = 0, and 0 < c(n, P ) < |P | ∧ 1 for P 6= 0. (3.6)

Further properties are collected in the following statement. Item (iii) provides a simple
criterion to compare the uncoupled eigenvalue 1

2P
2 to energy thresholds, which proves in

particular the last part of Lemma 1.1.

Lemma 3.2. Given a boson mass m > 0, let energy thresholds be defined in (3.2)–(3.3).
(i) For all n ≥ 1, we have

c(n, P ) ↑ 1 and E
(n)
0 (P ) = |P | − 1

2 + o(1) as |P | ↑ ∞.

(ii) For all P , we have

c(n, P ) ↓ 0 and E
(n)
0 (P ) = mn+ o(1) as n ↑ ∞.

(iii) For all n ≥ 1, there exists a unique value |P (n)| such that the following equivalence
holds:

1
2P

2 ≥ E(n)
0 (P ) ⇐⇒ |P | ≥ |P (n)|. (3.7)

In addition, this value |P (n)| is increasing in n and we have |P (1)| = |P?| > 1,
where |P?| is the critical value defined in Lemma 1.1.

(iv) Energy increments satisfy the following monotonicity properties,

for all n : 0 < E
(n+1)
0 (P )− E(n)

0 (P ) ↓ 0 as |P | ↑ ∞,

for all P : 0 < E
(n+1)
0 (P )− E(n)

0 (P ) ↑ m as n ↑ ∞.
♦

Proof. Items (i) and (ii) are direct consequences of definitions (3.2)–(3.3), so it remains to
establish (iii) and (iv). We split the proof into two steps.

Step 1. Proof of (iii).
For all n ≥ 1, starting from (3.2) and differentiating in |P |, a direct computation yields

∂
∂|P |E

(n)
0 (P )

=
|P | − c(n, P )√

m2n2 + (|P | − c(n, P ))2
+

(
c(n, P )− |P | − c(n, P )√

m2n2 + (|P | − c(n, P ))2

)
∂

∂|P |c(n, P ),
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and thus, by definition of c(n, P ), cf. (3.3),

∂
∂|P |E

(n)
0 (P ) =

|P | − c(n, P )√
m2n2 + (|P | − c(n, P ))2

= c(n, P ). (3.8)

In view of (3.6), this implies that the map |P | 7→ 1
2 |P |

2−E(n)
0 (P ) is increasing. Moreover,

the asymptotic behavior in (i) ensures that this map is unbounded as |P | ↑ ∞, and we see
from (3.2) that it takes the value −mn < 0 at P = 0. This entails that for all n ≥ 1 there
exists a unique value |P (n)| such that

1
2 |P

(n)|2 − E(n)
0 (P (n)) = 0, (3.9)

and the claimed equivalence (3.7) then follows by monotonicity.

It remains to check that the value |P (n)| is increasing in n. By (3.9), this follows provided
that we show that energy thresholds are increasing in n for any fixed P 6= 0,

E
(n+1)
0 (P )− E(n)

0 (P ) > 0. (3.10)

For that purpose, we start by noting that definitions (3.2)–(3.3) yield

E
(n)
0 (P ) = FP (c(n, P )), FP (c) := 1

2c
2 + |P |

c − 1.

As (3.6) ensures c(n, P ) < |P |∧1 for all n, as the function FP is decreasing on (−∞, |P |∧1),
and as (ii) states that c(n, P ) is decreasing in n, claim (3.10) follows. Alternatively, this
result follows from identity (3.11) below.

Step 2. Proof of (iv).
We first investigate the behavior in |P | for fixed n. From (3.8) we deduce

∂
∂|P |

(
E

(n+1)
0 (P )− E(n)

0 (P )
)

= c(n+ 1, P )− c(n, P ),

which is negative in view of (ii). In addition, the asymptotic behavior in (i) ensures that
energy increments tend to 0 as |P | ↑ ∞.

We turn to the behavior in n for fixed P . As definitions (3.2)–(3.3) make sense for any
n ∈ (0,∞), we may treat n as a continuous variable. Then starting from (3.2) and
differentiating in n, we find

∂
∂nE

(n)
0 (P )

=
m2n√

m2n2 + (|P | − c(n, P ))2
+

(
c(n, P )− |P | − c(n, P )√

m2n2 + (|P | − c(n, P ))2

)
∂
∂nc(n, P ),

and thus, by definition of c(n, P ), cf. (3.3),

∂
∂nE

(n)
0 (P ) =

m2n√
m2n2 + (|P | − c(n, P ))2

.

This allows to write energy increments as

E
(n+1)
0 (P )− E(n)

0 (P ) = m

ˆ n+1

n

mr√
m2r2 + (|P | − c(r, P ))2

dr, (3.11)

which entails in particular for all n,

0 < E
(n+1)
0 (P )− E(n)

0 (P ) ≤ m, lim
n↑∞

(
E

(n+1)
0 (P )− E(n)

0 (P )
)

= m.
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It remains to check that energy increments are increasing in n. For that purpose, we
further compute

∂
∂n

mn√
m2n2 + (|P | − c(n, P ))2

=
m(|P | − c(n, P ))

(m2n2 + (|P | − c(n, P ))2)
3
2

(
|P | − c(n, P ) + n ∂

∂nc(n, P )
)
. (3.12)

Differentiating the definition (3.3) of c(n, P ) with respect to n, we find after straightforward
simplifications,

∂
∂nc(n, P ) = − m2n2

(m2n2 + (|P | − c(n, P ))2)
3
2

∂
∂nc(n, P )− m2n(|P | − c(n, P ))

(m2n2 + (|P | − c(n, P ))2)
3
2

,

and thus,

∂
∂nc(n, P ) = − 1

n(|P | − c(n, P ))

(
1 +

(m2n2 + (|P | − c(n, P ))2)
3
2

m2n2

)−1

. (3.13)

This entails
∂
∂nc(n, P ) > − 1

n(|P | − c(n, P )),

so that (3.12) becomes
∂
∂n

mn√
m2n2 + (|P | − cn(P ))2

> 0.

Combined with (3.11), this proves that the map n 7→ E
(n+1)
0 (P ) − E(n)

0 (P ) is increasing,
and the conclusion follows. �

3.2. A first construction of conjugate operator. We turn to the construction of a
conjugate operator for the uncoupled fiber Hamiltonian H0(P ). A tentative conjugate
is first constructed as a second-quantization operator by following (1.1), which we shall
subsequently modify in Section 3.4 to improve on its regularity properties.

In case of massive bosons, as energy thresholds satisfy E(n)
0 (P ) ↑ ∞, cf. Lemma 3.2(iv),

it suffices to construct a conjugate and prove a Mourre estimate separately on each energy
interval

In(P ) :=
[
E

(n)
0 (P ), E

(n+1)
0 (P )

)
,

and on this interval we only need to compute commutators on state spaces with at most n
bosons. In order to construct a conjugate operator in this setting, we follow (1.1) and first
recall that on the n-boson state space the uncoupled fiber Hamiltonian has symbol

H
(n)
0 (P ; k1, . . . , kn) = 1

2

(
P −

n∑
j=1

kj

)2
+

n∑
j=1

ω(kj), (3.14)

which attains a unique minimum at

k1 = . . . = kn = k?(n, P ), (3.15)

cf. (3.5). By convexity, a natural choice of conjugate on Γ
(n)
s (h) is then given by the

generator of dilations around this minimum,
n∑
j=1

i
2

((
kj − k?(n, P )

)
· ∇kj +∇kj ·

(
kj − k?(n, P )

))
on Γ(n)

s (h). (3.16)
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We could consider the operator that coincides with this choice on Γ
(n)
s (h) for all n, but, due

to the dependence of k?(n, P ) on the number n of bosons, it would not lead to a second-
quantization operator and would thus cause several issues such as the lack of regularity of
the fiber interaction Hamiltonian Φ(ρ) — just as (2.5) in the quantum friction model. This
is made particularly delicate as k?(n, P ) depends on n not explicitly — unlike (2.4). In-
stead, when focussing on the energy interval In(P ), we consider the following n-dependent
second-quantization operator,

A◦P,n := dΓ(a◦P,n), a◦P,n := i
2

((
k − k?(n, P )

)
· ∇k +∇k ·

(
k − k?(n, P )

))
. (3.17)

It coincides with (3.16) on the n-boson state space, but for ` < n bosons it corresponds
to the generator of dilations around k1 = . . . = k` = k?(n, P ). Although this choice is
inadequate for ` < n bosons, we shall see that it is compensated by the fact that in that
case the energy interval In(P ) is further away from the minimum of the symbol. This will
precisely allow to derive a Mourre estimate with respect to A◦P,n on In(P ).

We emphasize that the above definition (3.17) of the conjugate operator is quite dif-
ferent from previous choices in the literature [44, 37]. Indeed, we consider here boson
momenta kj − k?(n, P ) as measured in the reference frame minimizing the total kinetic
energy (3.14), while in [44, 37] the starting point is instead to consider relative boson
group velocities ∇kjH

(n)
0 (P ; k1, . . . , kn). Our new choice appears particularly adapted to

the problem and makes it possible to investigate for the first time the essential spectrum
above the two-boson energy threshold in the weak-coupling regime.

Before turning to the proof of a Mourre estimate, we investigate properties of the above-
defined conjugate operator A◦P,n. In particular, item (ii) states the C2-regularity of the
uncoupled fiber Nelson Hamiltonian H0(P ). We emphasize that this limited regularity is
optimal, cf. [37, Section 2.2]: it comes from the fact that A◦P,n is a dilation around a point at
a nonzero fixed distance from the origin, which entails that the commutator [H0(P ), A◦P,n]

is only NH0(P )1/2-bounded, hence H0(P )3/2-bounded, but not H0(P )-bounded. In ap-
plications, this would prohibit to use the full power of Mourre’s theory: results like The-
orem A.8, for instance, are not available without stronger regularity. This issue will be
resolved in Section 3.4 below by a suitable modification of A◦P,n.

Lemma 3.3.
(i) The conjugate operator A◦P,n is essentially self-adjoint on Cf and its closure generates

a unitary group that commutes with the number operator and leaves the domain D of
fiber Hamiltonians (1.10) invariant.

(ii) The fiber Hamiltonian H0(P ) is of class C2(A◦P,n).

(iii) Let the interaction kernel ρ belong to Hν(Rd) with 〈k〉ν∇νρ ∈ L2(Rd) for some ν ≥ 1.
Then, for all 0 ≤ s ≤ ν, the s-th iterated commutator adsiA◦P,n

(Φ(ρ)) extends as

an N1/2-bounded self-adjoint operator. ♦

Proof. We start with item (i). Clearly, a◦P,n is essentially self-adjoint on C∞c (Rd), and the
essential self-adjointness of A◦P,n on Cf follows. In addition, as the unitary group generated
by a◦P,n takes the explicit form(

eita
◦
P,nu

)
(k) = e−t

d
2 u
(
e−t(k − k?(n, P )) + k?(n, P )

)
, u ∈ L2(Rd),
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the domainD = D(H0(P )) is obviously invariant under eitA
◦
P,n = Γ(eita

◦
P,n). Next, the proof

of (ii) follows from a direct computation and is a particular case of [37, Proposition 2.5].
It remains to check (iii). As A◦P,n = dΓ(a◦P,n) is a second-quantization operator, we find

[Φ(ρ), iA◦P,n] = −Φ(ia◦P,nρ).

As Φ(ia◦P,nρ) is N1/2-bounded provided a◦P,nρ ∈ L2(Rd), and repeating the same computa-
tion for iterated commutators, the conclusion follows. �

3.3. Mourre estimate. We turn to the proof of a Mourre estimate for the uncoupled
fiber Hamiltonian H0(P ) with respect to the above-constructed conjugate operator A◦P,n.
It requires a quite delicate computation based on fine properties of the symbol (3.4) around
its minimizer (3.5). Note that, surprisingly, our construction does not allow to treat the
case of energy intervals I’s with 1 < n < nP in the notation below.

Lemma 3.4. Given a total momentum |P | > |P?|, define nP ≥ 1 such that
1
2P

2 ∈
[
E

(nP )
0 (P ), E

(nP+1)
0 (P )

)
. (3.18)

For all ε > 0 and all energy intervals I ⊂
[
E

(n)
0 (P ) + ε, E

(n+1)
0 (P )

)
with n = 1 or n ≥ nP ,

the following Mourre estimate holds with respect to A◦P,n on I,

1I(H0(P ))[H0(P ), iA◦P,n]1I(H0(P )) ≥ εΠ̄Ω1I(H0(P ))Π̄Ω. (3.19)

In particular, the Mourre estimate is strict if I does not contain the eigenvalue 1
2P

2. ♦

Proof. Let |P | > |P?| be fixed, define nP via (3.18), and consider an energy interval

I ⊂
[
E

(n)
0 (P ) + ε, E

(n+1)
0 (P )

)
(3.20)

for some n ≥ 1 and ε > 0. We split the proof into four steps.

Step 1. Proof that the Mourre estimate (3.19) follows if we show for all 1 ≤ ` ≤ n,
Π`1I(H0(P ))[H0(P ), iA◦P,n]1I(H0(P ))Π` ≥ εΠ`1I(H0(P ))Π`. (3.21)

where Π` is the orthogonal projection on the `-boson state space Γ
(`)
s (h).

First recall that H0(P ) and A◦P,n commute with the number operator, hence with each
projection Π`. It is thus enough to prove (3.21) for each ` ≥ 0. Now, for ` = 0, this lower
bound is trivial as Ω is an eigenvector of H0(P ). Next, as the symbol of H0(P ) is bounded
below by E(`)

0 (P ) on the `-boson state space, and as we have E(`)
0 (P ) ≥ E(n+1)

0 (P ) for ` > n
in view of Lemma 3.2(iv), the choice (3.20) of the energy interval I entails

1I(H0(P ))Π` = 0 for all ` > n, (3.22)

and the claim follows.

Step 2. Proof that for all 1 ≤ ` ≤ n,

Π`[H0(P ), iA◦P,n]Π` ≥ Π`H0(P )Π` −H
(`)
0

(
P ; k

(n)
? , . . . , k

(n)
?

)
Π`, (3.23)

where henceforth we set for notational simplicity

k
(n)
? := k?(n, P ) = 1

n(|P | − c(n, P )) P
|P | , (3.24)

cf. (3.5), thus omitting the dependence on P in the notation.
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For that purpose, we start by noting that the symbol (3.4) of H0(P ) on the `-boson state
space can be decomposed as

H
(`)
0 (P ; k1, . . . , k`) = 1

2

(∑̀
j=1

kj−nk(n)
?

)2
+
∑̀
j=1

(
ω(kj)−ω(k

(n)
? )−c(n, P ) P

|P | · (kj−k
(n)
? )
)

+H
(`)
0

(
P ; k

(n)
? , . . . , k

(n)
?

)
− 1

2(n− `)2|k(n)
? |2. (3.25)

By definition (3.17) of the conjugate operator, writing

iA◦P,n = −dΓ
(

(k − k(n)
? ) · ∇k + d

2

)
,

a direct computation then yields on Γ
(`)
s (h),

[H0(P ), iA◦P,n]|
Γ
(`)
s (h)

=

[∑̀
j=1

(kj − k(n)
? ) · ∇kj , H

(`)
0 (P ; k1, . . . , k`)

]

=
(∑̀
j=1

(kj − k(n)
? )
)
·
(∑̀
j=1

kj − nk(n)
?

)
+
∑̀
j=1

(kj − k(n)
? ) ·

(
∇ω(kj)− c(n, P ) P

|P |

)
.

This identity can be further reorganized as follows,

[H0(P ), iA◦P,n]|
Γ
(`)
s (h)

= n−`
2n

(∑̀
j=1

kj

)2
+ n+`

2n

(∑̀
j=1

kj − nk(n)
?

)2
− 1

2n(n− `)|k(n)
? |2

+
∑̀
j=1

(
ω(kj)− ω(k

(n)
? )− c(n, P ) P

|P | · (kj − k
(n)
? )
)

+
∑̀
j=1

(
ω(k

(n)
? )− kj ·k

(n)
? +m2

ω(kj)

)
.

Recognizing the symbol H(`)
0 (P ; k1, . . . , k`) in the right-hand side in form of (3.25), and

noting that

ω(k
(n)
? ) ≥ k · k(n)

? +m2

ω(k)
for all k,

we deduce

[H0(P ), iA◦P,n]|
Γ
(`)
s (h)

≥ H
(`)
0 (P ; k1, . . . , k`)−H

(`)
0 (P ; k

(n)
? , . . . , k

(n)
? )

+ n−`
2n

(∑̀
j=1

kj

)2
+ `

2n

(∑̀
j=1

kj − nk(n)
?

)2
− 1

2`(n− `)|k
(n)
? |2.

Finally, noting that

n−`
2n

(∑̀
j=1

kj

)2
+ `

2n

(∑̀
j=1

kj − nk(n)
?

)2

= 1
2

(∑̀
j=1

kj

)2
− `k(n)

? ·
(∑̀
j=1

kj

)
+ 1

2`n|k
(n)
? |2
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= 1
2

(∑̀
j=1

kj − `k(n)
?

)2
+ 1

2`(n− `)|k
(n)
? |2

≥ 1
2`(n− `)|k

(n)
? |2,

we conclude

[H0(P ), iA◦P,n]|
Γ
(`)
s (h)

≥ H
(`)
0 (P ; k1, . . . , k`)−H

(`)
0 (P ; k

(n)
? , . . . , k

(n)
? ),

that is, (3.23).

Step 3. Proof that, given an energy interval I as in (3.20), we have for all 1 ≤ ` ≤ n,

Π`1I(H0(P ))[H0(P ), iA◦P,n]1I(H0(P ))Π`

≥ εΠ` +
(
1− `

n

)(
1

2n(|P | − c(n, P ))2 − α(n, P )
)

Π`, (3.26)

where α(n, P ) stands for the positive distance between the eigenvalue 1
2P

2 and the energy
threshold below I,

α(n, P ) := 1
2P

2 − E(n)
0 (P ) = 1

2P
2 −H(n)

0 (P ; k
(n)
? , . . . , k

(n)
? ). (3.27)

Starting from (3.23), and recalling that the choice (3.20) of I yields

inf I ≥ ε+ E
(n)
0 (P ) = ε+H

(n)
0 (P ; k

(n)
? , . . . , k

(n)
? ),

we are led to

Π`1I(H0(P ))[H0(P ), iA◦P,n]1I(H0(P ))Π`

≥
(
ε+H

(n)
0 (P ; k

(n)
? , . . . , k

(n)
? )−H(`)

0 (P ; k
(n)
? , . . . , k

(n)
? )
)

Π`.

To prove (3.26), it thus remains to check for all ` ≤ n,

H
(n)
0 (P ; k

(n)
? , . . . , k

(n)
? )−H(`)

0 (P ; k
(n)
? , . . . , k

(n)
? )

≥
(
1− `

n

)(
1

2n(|P | − c(n, P ))2 − α(n, P )
)
. (3.28)

For that purpose, we decompose

H
(`)
0 (P ; k

(n)
? , . . . , k

(n)
? )

= 1
2(P − `k(n)

? )2 + `ω(k
(n)
? )

= 1
2P

2 + 1
2`

2|k(n)
? |2 − `P · k(n)

? + `ω(k
(n)
? )

= `
n

(
1
2P

2 + 1
2n

2|k(n)
? |2 − nP · k(n)

? + nω(k
(n)
? )
)

+ 1
2

(
1− `

n

)
P 2 − 1

2`(n− `)|k
(n)
? |2

= `
nH

(n)
0 (P ; k

(n)
? , . . . , k

(n)
? ) + 1

2

(
1− `

n

)
P 2 − 1

2`n
(
1− `

n

)
|k(n)
? |2.

In terms of (3.27), this yields

H
(n)
0 (P ; k

(n)
? , . . . , k

(n)
? )−H(`)

0 (P ; k
(n)
? , . . . , k

(n)
? )

=
(
1− `

n

)
H

(n)
0 (P ; k

(n)
? , . . . , k

(n)
? )− 1

2

(
1− `

n

)
P 2 + 1

2`n
(
1− `

n

)
|k(n)
? |2

=
(
1− `

n

)(
1
2`n|k

(n)
? |2 − α(n, P )

)
.

Now recalling |k(n)
? | = 1

n(|P | − c(n, P )), cf. (3.24), the claim (3.28) follows.
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Step 4. Conclusion.
As nP is defined via (3.18), the definition (3.27) of α yields α(n, P ) ≤ 0 for n > nP . The
right-hand side in (3.26) is thus bounded below by εΠ` if ` = n, or if ` < n and n > nP .
It remains to prove the corresponding result in the case ` < n = nP . In other words, it
remains to prove the following implication, for all n, P ,

1
2 |P |

2 ∈
[
E

(n)
0 (P ), E

(n+1)
0 (P )

)
=⇒ 1

2n(|P | − c(n, P ))2 − α(n, P ) ≥ 0. (3.29)

For that purpose, we start by noting that the definition (3.3) of c(n, P ) yields

|P | − c(n, P ) = mn
c(n, P )√

1− c(n, P )2
, (3.30)

which allows to rewrite (3.2) in particular as

E
(n)
0 (P ) = 1

2c(n, P )2 +
mn√

1− c(n, P )2
,

and thus
α(n, P ) = 1

2P
2 − 1

2c(n, P )2 − mn√
1− c(n, P )2

. (3.31)

Further inserting (3.30) in this last identity to eliminate |P |, we get

α(n, P ) = 1
2c(n, P )2

(
1 +

mn√
1− c(n, P )2

)2

− 1
2c(n, P )2 − mn√

1− c(n, P )2

= 1
2m

2n2 c(n, P )2

1− c(n, P )2
−mn

√
1− c(n, P )2. (3.32)

Combining this with (3.30) again to reformulate the quantity of interest in (3.29), we find

1
2n(|P | − c(n, P ))2 − α(n, P ) = −1

2m
2n(n− 1)

c(n, P )2

1− c(n, P )2
+mn

√
1− c(n, P )2,

which entails that the implication (3.29) is actually equivalent to

1
2P

2 ∈
[
E

(n)
0 (P ), E

(n+1)
0 (P )

)
=⇒ (1− c(n, P )2)

3
2

c(n, P )2
≥ 1

2m(n− 1).

As the map |P | 7→ c(n, P ) is increasing, cf. Lemma 3.2(i), it suffices to prove this implication
for P such that 1

2P
2 = E

(n+1)
0 (P ), that is, for |P | = |P (n+1)|, cf. Lemma 3.2(iii). We are

thus reduced to proving for all n,

(1− c(n, P (n+1))2)
3
2

c(n, P (n+1))2
≥ 1

2m(n− 1). (3.33)

As by definition α(n+1, P (n+1)) = 1
2 |P

(n+1)|2−E(n+1)
0 (P (n+1)) = 0, identity (3.32) entails

1
2m(n+ 1) =

(
1− c(n+ 1, P (n+1))2

) 3
2

c(n+ 1, P (n+1))2
. (3.34)

The claim (3.33) can thus be reformulated as(
1− c(n+ 1, P (n+1))2

) 3
2

c(n+ 1, P (n+1))2
−
(
1− c(n, P (n+1))2

) 3
2

c(n, P (n+1))2
≤ m, (3.35)

and it directly follows in this form from Lemma 3.5 below. �
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The conclusion of the above proof of the Mourre estimate relies on the following key
computation, which we state as a separate lemma for convenience.

Lemma 3.5. For all n ≥ 1, the function defined by

fn+1(r) :=

(
1− c(r, P (n+1))2

) 3
2

c(r, P (n+1))2

satisfies f ′n+1(r) ≤ m for all 0 < r ≤ n+ 1. ♦

Proof. We split the proof into two steps.

Step 1. Proof that it suffices to show

fn+1(r) ≤ 1
2rm for all 0 < r ≤ n+ 1. (3.36)

For notational simplicity, we set c(r) := c(r, P (n+1)). The derivative of fn+1 takes the form

f ′n+1(r) = − 1
c(r)4

(
3c(r)3c′(r)

√
1− c(r)2 + 2c(r)c′(r)(1− c(r)2)

3
2

)
= −c′(r)c(r)

2 + 2

c(r)3

√
1− c(r)2. (3.37)

Recall that the derivative of c was computed in (3.13),

c′(r) = −1
r (|P (n+1)| − c(r))

(
1 +

(m2r2 + (|P (n+1)| − c(r))2)
3
2

m2r2

)−1

,

and thus, using (3.30) in form of

|P (n+1)| − c(r) = mr
c(r)√

1− c(r)2
,

we find

c′(r) = − mc(r)√
1− c(r)2

(
1 +

mr

(1− c(r)2)
3
2

)−1

= − mc(r)(1− c(r)2)

mr + (1− c(r)2)
3
2

.

Inserting this into (3.37), we get

f ′n+1(r) =
m(1− c(r)2)

3
2

mr + (1− c(r)2)
3
2

c(r)2 + 2

c(r)2
,

and we deduce the following equivalence: for all r,

f ′n+1(r) ≤ m ⇐⇒ (1− c(r)2)
3
2

mr + (1− c(r)2)
3
2

c(r)2 + 2

c(r)2
≤ 1

⇐⇒ 2(1− c(r)2)
3
2 ≤ mrc(r)2

⇐⇒ fn+1(r) ≤ 1
2mr,

as claimed.

Step 2. Conclusion.
Let 0 < r ≤ n+1 be fixed. As the map |P | 7→ c(r, P ) is increasing and as |P (n+1)| ≥ |P (r)|
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in view of Lemma 3.2(iii) (where we can extend the definition of |P (r)| to all real r > 0),
we find

fn+1(r) =
(1− c(r, P (n+1))2)

3
2

c(r, P (n+1))2
≤ (1− c(r, P (r))2)

3
2

c(r, P (r))2
. (3.38)

Noting that the same argument as for (3.34) yields

(1− c(r, P (r))2)
3
2

c(r, P (r))2
= 1

2mr,

we deduce fn+1(r) ≤ 1
2mr, and the conclusion follows from Step 1. �

3.4. Modification procedure and improved regularity. This section is devoted to
the modification of the tentative conjugate operator A◦P,n to improve on the associated
regularity properties in Lemma 3.3(ii), in view of the proof of Theorem 1.2. More precisely,
we shall only modify A◦P,n on `-boson state spaces for all ` > n, while keeping it unchanged
elsewhere. Indeed, by (3.22), we recall that a Mourre estimate on the energy interval In(P )
only needs to be checked on `-boson state spaces for all 1 ≤ ` ≤ n, hence our modification
will not impact the validity of the Mourre estimate proven for A◦P,n in Lemma 3.4. We
emphasize that our modification procedure is quite general and may be of independent
interest for other massive QFT models.

3.4.1. Motivation for modification procedure. We start by further examining the above-
defined tentative conjugate operator A◦P,n, decomposing it as

A◦P,n = D◦ − dΓ
(
ik?(n, P ) · ∇k

)
, (3.39)

where D◦ stands for the generator of dilations,

D◦ := dΓ(d◦), d◦ := i
2(k · ∇k +∇k · k).

The lack of regularity of H0(P ) with respect to A◦P,n precisely originates from the second
term dΓ(ik?(n, P ) · ∇k) in (3.39), as indeed its commutator with (P − dΓ(k))2 is not
H0(P )-bounded. To cure this issue, we might naïvely want to rather consider the truncated
operator

A′P,n := D◦ −Π≤ndΓ
(
ik?(n, P ) · ∇k

)
Π≤n, (3.40)

in terms of the orthogonal projection Π≤n onto
⊕n

`=0 Γ
(`)
s (h). By definition, H0(P ) is

now of class C∞(A′P,n). In addition, as this operator coincides with A◦P,n on the range
of Π≤n, we deduce that H0(P ) satisfies the same Mourre estimate with respect to A′P,n as
in Lemma 3.4.

This is however not the end of the story: the brutal truncation in (3.40) happens to
behave badly with respect to the fiber Hamiltonian Φ(ρ), in link with the fact that A′P,n
is no longer a second-quantization operator. The truncation thus needs to be suitably
complemented on `-boson state spaces for ` > n, although not by means of second quan-
tization. In the spirit of our constructions in Section 2.1 for the quantum friction model,
instead of considering the second quantization dΓ

(
ik?(n, P ) ·∇k

)
in (3.39), which amounts

to taking sums of coordinates {ik?(n, P ) · ∇kj}j , and instead of taking a brutal truncation
as in (3.40) on `-boson state spaces with ` > n, we shall consider partial sums of the n
largest signed values of the coordinates.
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3.4.2. Partial sums of largest signed values and regularization. Instead of momentum rep-
resentation on h, we shall use position representation: we denote by y := i∇ξ the position
coordinate, and we set z := P

|P | · y for the coordinate in the P -direction. For all 1 ≤ j ≤ `,
we define the function mj,` : R` → R as the jth largest signed value of the entries: for all
z1, . . . , z` ∈ R, we set

mj,`(z1, . . . , z`) := zi0

where the index i0 is chosen such that |zi0 | is the jth largest value among |z1|, . . . , |z`|.
This is obviously well-defined on R` up to a null set. Note that for j = 1 the function m1,`

coincides with the signed maximum m` defined in (2.8). For all 1 ≤ j < `, we then define
the function sj,` : R` → R as the sum of the j largest signed entries,

sj,` := m1,` + . . .+mj,`,

and for j ≥ ` we simply define

sj,`(z1, . . . , z`) := z1 + . . .+ z`.

As in Lemma 2.1, we note that sj,` is not continuous for j < ` and thus needs to be regu-
larized, which we shall carefully perform in the spirit of (2.12). For that purpose, we start
by defining for all 1 ≤ j ≤ ` the functions maxj,` : R` → R and minj,` : R` → R as the jth
largest and the jth smallest entries, respectively: more precisely, these functions are de-
fined to be symmetric upon permutation of their entries, and to satisfy maxj,`(z1, . . . , z`) =
z`−j+1 and minj,`(z1, . . . , z`) = zj if z1 ≤ . . . ≤ z`. These functions are both obviously
well-defined and continuous, and we have the relations

|mj,`(z1, . . . , z`)| = maxj,`(|z1|, . . . , |z`|),
max1,`(z1, . . . , z`) = max

1≤l≤`
zl = min`,`(z1, . . . , z`),

min1,`(z1, . . . , z`) = min
1≤l≤`

zl = max`,`(z1, . . . , z`).

In these terms, for all 1 ≤ j < `, we note that the definition of sj,` can be reformulated as

sj,` =

j∑
l=1

(
1
2

(
maxj+1−l,` + minl,`

)
+ 1

2

(
maxj+1−l,`−minl,`

)
sgn
(
maxj+1−l,` + minl,`

))
,

where now only the sign functions need to be regularized. Given δ > 0, we choose a smooth
odd function χδ : R→ [−1, 1] as in (2.11), and we define for all 1 ≤ j < `,

s̃j,`;δ =

j∑
l=1

(
1
2

(
maxj+1−l,` + minl,`

)
+ 1

2

(
maxj+1−l,`−minl,`

)
χδ

(
maxj+1−l,` + minl,`

1+maxj+1−l,`−minl,`

))
,

which is obviously globally well-defined and continuous. For j ≥ `, no regularization is
needed and we simply set

s̃j,`;δ(z1, . . . , z`) := sj,`(z1, . . . , z`) = z1 + . . .+ z`.

In view of properties of χδ, a direct computation yields

1 ≤
∑̀
l=1

∂ls̃j,`;δ ≤ (2 + δ)(j ∧ `), (3.41)



MASSIVE CHERENKOV RADIATION AND QUANTUM FRICTION 37

and in addition, for all r ≥ 1,∣∣∣∣(∑̀
l=1

∂l

)r
s̃j,`;δ

∣∣∣∣ .χδ,r j ∧ `, ∣∣∣∣(∑̀
l=1

zl∂l

)r
s̃j,`;δ − s̃j,`;δ

∣∣∣∣ .χδ,r j ∧ `. (3.42)

In particular, note that s̃j,`;δ is smooth in the direction (1, . . . , 1). Next, we state the
following generalization of Lemma 2.2 for m̃`;δ = s̃1,`;δ, which will be key to estimate
commutators with field operators. The proof is a direct adaptation of that of Lemma 2.2
and we skip the detail.

Lemma 3.6. For all j, ` ≥ 1, there holds for all z, z1, . . . , z` ∈ R,∣∣s̃j,`+1;δ(z, z1, . . . , z`)− s̃j,`;δ(z1, . . . , z`)
∣∣ ≤ 2|z|+ 1. ♦

3.4.3. Back to conjugate operator. With the above construction at hand, we turn to the
suitable replacement for the second term in the tentative choice (3.39) of the conjugate
operator. For all n, `, we define the operator SP,n,`;δ on the `-boson state space as the
multiplication with the function

(y1, . . . , y`) 7→ |k?(n, P )| s̃n,`;δ
(
P
|P | · y1, . . . ,

P
|P | · y`

)
, (3.43)

using position representation y = i∇k on h, and we define

SP,n;δ :=
∞⊕
`=1

SP,n,`;δ on Hf :=
∞⊕
`=0

Γ(`)
s (h). (3.44)

Coming back to (3.39), we then define the following modified conjugate operator,

AP,n;δ := D◦ − SP,n;δ on Hf , (3.45)

where we recall that D◦ stands for the generator of dilations,

D◦ = dΓ(d◦), d◦ = i
2(k · ∇k +∇k · k).

By definition, the operator AP,n;δ commutes with the number operator. Given its action on
`-boson state space, it is clearly essentially self-adjoint on Cf , and we state that it generates
an explicit unitary group that preserves the domain of fiber Hamiltonians. The proof is
analogous to that of Lemma 2.3 and is skipped for brevity.

Lemma 3.7. The operator AP,n;δ is essentially self-adjoint on Cf and its closure generates
a unitary group {eitAP,n;δ}t∈R on Hf , which commutes with the number operator and has
the following explicit action: for all ` ≥ 1 and u` ∈ Γ

(`)
s (h),

(
eitAP,n;δu`

)
(y1, . . . , y`) = exp

(
− i|k?(n, P )|

ˆ t

0
s̃n,`;δ

(
P
|P | · e

sy1, . . . ,
P
|P | · e

sy`
)
ds

)
× et`

d
2u`(e

ty1, . . . , e
ty`),

where we use position representation on h. In particular, the domain D of fiber Hamilto-
nians (1.10) is invariant under this group action. ♦
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3.4.4. Improved regularity. As by definition AP,n;δ coincides with A◦P,n on `-boson state
spaces for all ` ≤ n, it follows from (3.22) that the Mourre estimate of Lemma 3.4 holds
in the exact same form with respect to AP,n;δ, thus proving Theorem 1.2(ii). Next, we
show that the fiber Hamiltonian H0(P ) is now of class C∞(AP,n;δ), which improves on the
limited C2-regularity available with respect to A◦P,n, cf. Lemma 3.3(ii). Combined with
Lemma 3.7, this proves Theorem 1.5(i), further noting that the C∞(AP,n;δ)-regularity
property indeed follows by applying the sufficient criterion in Lemma A.3.

Lemma 3.8. For all s ≥ 1, the s-th iterated commutator adsiAP,n;δ(H0(P )) extends as an
H0(P )-bounded self-adjoint operator. ♦

Proof. By definition (3.45) of AP,n;δ, the first commutator can be split as

[H0(P ), iAP,n;δ] = [H0(P ), iD◦]− [H0(P ), iSP,n;δ]

= −dΓ(k) · (P − dΓ(k)) + dΓ(k · ∇ω(k))− [H0(P ), iSP,n;δ].

Using that |k · ∇ω(k)| = ω(k)−m2ω(k)−1 ≤ ω(k), the first two right-hand side terms are
obviously H0(P )-bounded operators: we get for all u, v ∈ Cf ,

|〈u, [H0(P ), iAP,n;δ]v〉| . |P |2‖u‖‖v‖+ ‖u‖‖H0(P )v‖+ |〈u, [H0(P ), iSP,n;δ]v〉|, (3.46)

and it remains to estimate the term. For that purpose, using position representation
y = i∇ξ on h, we write

[H0(P ), iSP,n;δ] = 1
2 [(P + dΓ(i∇y))2, iSP,n;δ] + [dΓ(ω(i∇y)), iSP,n;δ]

= −1
2dΓ(∇y) · [dΓ(∇y), iSP,n;δ]− 1

2 [dΓ(∇y), iSP,n;δ] · dΓ(∇y)
−P · [dΓ(∇y), SP,n;δ] + [dΓ(ω(i∇y)), iSP,n;δ],

or alternatively,

[H0(P ), iSP,n;δ] = −[dΓ(∇y), SP,n;δ] · (P + dΓ(i∇y))− 1
2

[
dΓ(∇y)·, [dΓ(∇y), iSP,n;δ]

]
+ [dΓ(ω(i∇y)), iSP,n;δ].

By definition (3.43)–(3.44) of SP,n;δ, recalling (3.5) and using (3.42), the commutators
[dΓ(∇y), iSP,n;δ] and

[
dΓ(∇y)·, [dΓ(∇y), iSP,n;δ]

]
are bounded by O(|P |). We deduce for

all u, v ∈ Cf ,

|〈u, [H0(P ), iSP,n;δ]v〉| . |P |‖u‖‖v‖+ |P |‖u‖‖H0(P )
1
2 v‖

+ |〈u, [dΓ(ω(i∇y)), iSP,n;δ]v〉|, (3.47)

and it remains to estimate the last commutator [dΓ(ω(i∇y)), iSP,n;δ], that is, on the `-boson
state space,

[dΓ(ω(i∇y)), iSP,n;δ]|Γ(`)
s (h)

=
∑̀
j=1

[ω(i∇yj ), iSP,n,`;δ]. (3.48)

We split this task into three steps: we first show that the commutator [|∇yj |, iSP,n,`;δ] is
nicely bounded and then we appeal to the calculus of almost-analytic extensions to reduce
the analysis of the difference ω(i∇yj )− |∇yj | to that of the resolvent (z − |∇yj |)−1.

Step 1. Preliminary commutator estimates: for all 1 ≤ j ≤ `, we have

‖[|∇yj |, iSP,n,`;δ]‖ . 1
n |P |, (3.49)
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and in addition, for all u`, v` ∈ Cf ∩ Γ
(`)
s (h) and z ∈ C \ R,

|〈u`, [(z − |∇yj |)−1, iSP,n,`;δ]v`〉| . 1
n |P ||=z|

−2‖u`‖‖v`‖. (3.50)

We start with the proof of (3.49). By symmetry, we focus on j = 1. Recalling the definition
of SP,n,`;δ, cf. (3.43), and using the integral representation for |∇y1 | = (−4y1)1/2, we find
for all v` ∈ Cf ∩ Γ

(`)
s (h),

[|∇y1 |, iSP,n,`;δ]v`(y1, . . . , y`) = C|k?(n, P )|

×
ˆ
Rd

1
|y1−y′1|d+1

(
is̃n,`;δ

(
P
|P | · y1,

P
|P | · y2, . . . ,

P
|P | · y`

)
− is̃n,`;δ

(
P
|P | · y

′
1,

P
|P | · y2, . . . ,

P
|P | · y`

))
× v`(y′1, y2, . . . , y`) dy

′
1.

Using that s̃n,`;δ is Lipschitz continuous and appealing to the T (1) theorem [10], we find
that this commutator defines a bounded operator on L2((Rd)`) with

‖[|∇y1 |, iSP,n,`;δ]‖ . |k?(n, P )|‖∇1s̃n,`;δ‖L∞(R`).

Recalling (3.5) and noting that ‖∇1s̃n,`;δ‖L∞(R`) . 1, the claim (3.49) follows. We turn to
the proof of (3.50). For all z ∈ C \ R, we can write

[(z − |∇yj |)−1, iSP,n,`;δ] = −(z − |∇yj |)−1[|∇yj |, iSP,n,`;δ](z − |∇yj |)−1.

As ‖(z − |∇yj |)−1‖ ≤ |=z|−1, the claim (3.50) is a direct consequence of (3.49).

Step 2. Conclusion.
We start by decomposing

〈u`, [ω(i∇yj ), iSP,n,`;δ]v`〉
= 〈u`, [|∇yj |, iSP,n,`;δ]v`〉+ 〈u`, [ω(i∇yj )− |∇yj |, iSP,n,`;δ]v`〉. (3.51)

In order to estimate the second right-hand side term, we appeal to the calculus of almost-
analytic extensions, e.g. [14, Proposition C.2.2]: there exist f ∈ C∞(C) and constants
C,CN <∞ such that

f(t) = χ(t)
(
(m2 + t2)

1
2 − t

)
, ∀t ∈ R,

|∂f∂z̄ (z)| ≤ CN 〈<z〉−N−2|=z|N , ∀N ∈ N,
supp f ⊂ {z ∈ C : |=z| ≤ C〈<z〉},

where χ ∈ C∞(R) is a cut-off function such that χ(t) = 1 for t ≥ 0 and χ(t) = 0 for
t ≤ −1. We can then represent

f(t) = i
2π

ˆ
C

(z − t)−1 ∂f
∂z̄ (z) dz ∧ dz̄,

hence

ω(i∇yj )− |∇yj | = i
2π

ˆ
C

(z − |∇yj |)−1 ∂f
∂z̄ (z) dz ∧ dz̄.

Using this representation to rewrite the second right-hand side term in (3.51), and using
properties of f as well as commutator estimates (3.49) and (3.50), we get

|〈u`, [ω(i∇yj ), iSP,n,`;δ]v`〉| . 1
n |P |‖u`‖‖v`‖.
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In view of (3.48), as mN ≤ H0(P ), this entails for all u, v ∈ Cf ,

|〈u, [dΓ(ω(i∇y)), iSP,n;δ]v〉| . 1
n |P |‖u‖‖H0(P )v‖.

Combined with (3.46) and (3.47), this implies that the first commutator [H0(P ), iAP,n;δ]

satisfies for all u, v ∈ Cf ,

|〈u, [H0(P ), iAP,n;δ]v〉| . |P |‖u‖‖v‖+ |P |‖u‖‖H0(P )v‖,

hence it extends uniquely to the form of an H0(P )-bounded self-adjoint operator. Similarly
computing iterated commutators and using (3.42), the full conclusion easily follows; we skip
the detail. �

Finally, we state that the fiber interaction Hamiltonian Φ(ρ) still has the same C∞-
regularity with respect to AP,n;δ as in Lemma 3.3(iii), thus establishing Theorem 1.2(iii).
The proof is a straightforward adaptation of that of Lemma 2.6, now appealing to Lemma 3.6
instead of Lemma 2.2; we skip the detail.

Lemma 3.9. Let the interaction kernel ρ belong to Hν(Rd) with 〈k〉ν∇νρ ∈ L2(Rd) for
some ν ≥ 1. Then, for all 0 ≤ s ≤ ν, the s-th iterated commutator adsiAP,n;δ(Φ(ρ)) extends
as an N1/2-bounded self-adjoint operator. ♦

3.5. Consequences of Mourre estimate. Given a total momentum |P | > |P?|, let-
ting nP ≥ 1 be defined via (3.18), we turn to the proof of Corollary 1.3. By items (i)
and (iii) in Theorem 1.2, the sufficient criterion in Lemma A.3 ensures that the coupled
fiber Hamiltonian Hg(P ) is of class C∞(AP,n;δ) for all n, g. Next, by Theorem 1.2(ii),
for n = 1 and for any n ≥ nP , for all ε > 0, Lemma A.6 allows to infer that Hg(P ) satisfies
a Mourre estimate with respect to AP,n;δ on the energy interval(

E
(n)
0 (P ) + ε+

gCP,n
ε , E

(n+1)
0 (P )− gCP,n

ε

)
,

for some constant CP,n. Optimizing in ε, we deduce that Hg(P ) satisfies a Mourre estimate
on

JP,n;g :=
(
E

(n)
0 (P ) +

√
gCP,n , E

(n+1)
0 (P )− gCP,n

)
.

Moreover, the Mourre estimate is strict outside KP,n;g :=
[

1
2 |P |

2 − gCP,n , 1
2 |P |

2 + gCP,n
]
.

We may then appeal to Theorem A.5, which states that Hg(P ) has no singular spectrum
and at most a finite number of eigenvalues in JP,n;g, and has no eigenvalue in JP,n;g\KP,n;g.
In order to exclude the existence of eigenvalues in KP,n;g, we appeal to Theorem A.7, which
states the instability of the uncoupled eigenvalue 1

2P
2 provided that Fermi’s condition (A.8)

holds. Altogether, this proves item (i) of Corollary 1.3, and item (ii) follows by further
applying Theorem A.8. It remains to make Fermi’s condition (A.8) more explicit for the
model at hand, which we is the purpose of the following lemma; the proof is analogous to
that of Lemma 2.7 and is skipped for brevity.
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Lemma 3.10. For all |P | > |P?|, we have

lim
ε↓0

〈
Ω , Φ(ρ)Π̄Ω

(
H0(P )− 1

2P
2 − iε

)−1
Π̄ΩΦ(ρ)Ω

〉
= (2π)−d p. v.

ˆ ∞
E

(1)
0 (P )

(t− 1
2P

2)−1

(ˆ
{k : 1

2
(P−k)2+ω(k)=t}

|ρ(k)|2
|k−P+∇ω(k)|dHd−1(k)

)
dt

+ i
2(2π)1−d

ˆ
{k : 1

2
(P−k)2+ω(k)= 1

2
P 2}

|ρ(k)|2
|k−P+∇ω(k)|dHd−1(k),

where Hd−1 stands for the (d − 1)th-dimensional Hausdorff measure. In particular, the
imaginary part is positive if ρ is nowhere vanishing. ♦

Appendix A. Mourre’s commutator method

In this appendix, we briefly recall for convenience standard definitions and statements
from Mourre’s theory that we use in this work; we refer e.g. to [2, 27] for more detail. We
start with the notion of regularity with respect to a self-adjoint operator, which is crucial
to define commutators and deal with domain issues.

Definition A.1 (Regularity). Let A be a self-adjoint operator on a Hilbert space H.
— A bounded operator B on H is said to be of class Ck(A) if for all φ ∈ H the function

t 7→ e−itABeitAφ is k-times continuously differentiable.
— A self-adjoint operator H on H is said to be of class Ck(A) if its resolvent (H − z)−1

is of class Ck(A) for some z ∈ C \ R. ♦

We recall the following characterization: a bounded operator B is of class C1(A) if and
only if it maps D(A) into itself and if the commutator adiA(B) := [B, iA] extends uniquely
from D(A) to a bounded operator on H. Therefore, if H is a self-adjoint operator of
class C1(A), we may use the resolvent identity [(H−z)−1, iA] = −(H−z)−1[H, iA](H−z)−1

in the sense of forms on D(A), and we infer that the commutator adiA(H) := [H, iA]
extends uniquely from D(H) ∩ D(A) to a bounded form on D(H). Equivalently, this
means for all φ, ψ ∈ D(H) ∩ D(A),

|〈φ, [H, iA]ψ〉H| . ‖(|H|+ 1)φ‖H‖(|H|+ 1)ψ‖H. (A.1)

In fact, we state that the converse is also true under a technical assumption; see e.g. [2,
Theorem 6.3.4].

Lemma A.2 (Characterization of regularity; [2]). Let A and H be self-adjoint operators
on a Hilbert space H, and assume that the unitary group generated by A leaves the domain
of H invariant,

eitAD(H) ⊂ D(H) for all t ∈ R. (A.2)

Then, the domain D(H) ∩ D(A) is a core for H. In addition, H is of class C1(A) if and
only if (A.1) holds. ♦

We could write down similar characterizations for higher regularity, but we shall only
need the following sufficient criterion in case of H-bounded commutators. Note that this
H-boundedness condition is much stronger than (A.1) and is not always satisfied; see in
particular our setting in Section 3.2.
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Lemma A.3 (Sufficient criterion for higher regularity; [2]). Let A and H be self-adjoint
operators on a Hilbert space H, and assume that the unitary group generated by A leaves
the domain of H invariant, cf. (A.2). Given ν ≥ 1, assume iteratively for all 0 ≤ s ≤ ν,
starting with ad0

iA(H) := H, that the iterated commutator adsiA(H) is defined as a form on
D(H) ∩ D(A) and satisfies

‖|〈φ, adsiA(H)ψ〉| . ‖φ‖H‖(|H|+ 1)ψ‖H, (A.3)

which entails that adsiA(H) extends uniquely to the form of an H-bounded operator and
that the next commutator ads+1

iA (H) := [adsiA(H), iA] is also well-defined as a form on
D(H) ∩ D(A). Then, H is of class Cν(A). ♦

With these regularity assumptions at hand, we may now turn to Mourre commutator
estimates, which constitute a key tool for spectral analysis.

Definition A.4 (Mourre estimates). Let A be a self-adjoint operator on a Hilbert spaceH,
let H be a self-adjoint operator of class C1(A), and let J ⊂ R be a bounded open interval.
The operator H is said to satisfy a Mourre estimate on J with respect to the conjugate
operator A if there exists a constant c0 > 0 and a compact operator K such there holds in
the sense of forms,

1J(H)[H, iA]1J(H) ≥ c01J(H) +K.

The Mourre estimate is said to be strict if it holds with K = 0, and the constant c0 is
referred to as the Mourre constant. ♦

The main motivation for these commutator estimates is that they lead to precise infor-
mation on the nature of the spectrum of H; see [39, 2].

Theorem A.5 (Mourre’s theory; [39, 2]). Let A be a self-adjoint operator on a Hilbert
space H, let H be a self-adjoint operator of class C1(A), and assume that H satisfies a
Mourre estimate with respect to A on a bounded open interval J ⊂ R. Then the following
properties hold:
— H has at most a finite number of eigenvalues in J (counting multiplicities);
— if H is of class C2(A), then H has no singular continuous spectrum in J ;
— if the Mourre estimate is strict, then H has no eigenvalue in J . ♦

Next, we adapt these developments to the setting of perturbation theory. First, the
following standard lemma states that, if H satisfies a Mourre estimate and if a perturba-
tion V is sufficiently regular, then the perturbed operators Hg := H + gV also satisfy a
corresponding Mourre estimate for g small enough. In view of Section 3.2, care is taken not
to assume that [H, iA] be H-bounded; the outline of the proof is included for convenience.

Lemma A.6 (Mourre estimates under perturbations). Let A be a self-adjoint operator on a
Hilbert space H, let H be a self-adjoint operator of class C1(A), let V be a symmetric |H|1/2-
bounded operator, and assume that:
— the commutator [H, iA] satisfies the following strengthened version of (A.1),

|〈φ, [H, iA]ψ〉H| . ‖(|H|+ 1)
1
2φ‖H‖(|H|+ 1)ψ‖H; (A.4)

— the commutator [V, iA] extends as an H-bounded operator, in the sense that

|〈φ, [V, iA]ψ〉H| . ‖φ‖H‖(|H|+ 1)ψ‖H. (A.5)

Then the following properties hold.
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(i) The perturbed operator Hg = H + gV is self-adjoint on D(H) and is of class C1(A)
for all g ∈ R.

(ii) Further assume that H satisfies a Mourre estimate with respect to A on a bounded
interval (a, b), with constant c0. Then Hg satisfies a Mourre estimate with respect
to A on the restricted interval

(a+ η, b− η), η := gC
c0

(1 + |a|+ |b|)
3
2 ,

for some constant C only depending on the multiplicative constants in (A.4)–(A.5).
If in addition [H, iA] is H-bounded, in the sense that (|H| + 1)1/2φ can be replaced
by φ in the right-hand side of (A.4), then the same holds with η = gC

c0
(1 + |a|+ |b|).

Finally, if the Mourre estimate for H is strict, then the one for Hg is strict too.
(iii) Further assume that H is of class C2(A) and that [[V, iA], iA] extends as an H-

bounded operator. Then, Hg is of class C2(A) for all g ∈ R. ♦

Proof. As the perturbation V is |H|
1
2 -bounded, the perturbed operator Hg = H + gV is

self-adjoint and has the same domain as H for all g ∈ R. The proof of items (i) and (iii)
is standard, following the same lines as e.g. [37, proof of Proposition 2.5], starting from
identities

(Hg − z)−1 = (H − z)−1(1 + gV (H − z)−1)−1,

[(Hg − z)−1, iA] = [(H − z)−1, iA](1 + gV (H − z)−1)−1

−g(Hg − z)−1V [(H − z)−1, iA](1 + gV (H − z)−1)−1

−g(Hg − z)−1[V, iA](Hg − z)−1,

where =z is chosen large enough so that ‖gV (H − z)−1‖ < 1. We skip the detail and turn
to item (ii). Assume that H satisfies a Mourre estimate with respect to H on a bounded
interval J = (a, b). Let η ∈ (0, 1), let Jη := (a + η, b − η), and choose hη ∈ C∞c (R) such
that 1Jη ≤ hη ≤ 1J and |∇hη| . 1

η . Multiplying both sides of the Mourre estimate for H
with hη(H), we get for some compact operator K,

hη(H)[H, iA]hη(H) ≥ c0hη(H) + hη(H)Khη(H),

hence, as [V, iA] is H-bounded,

hη(H)[Hg, iA]hη(H) ≥
(
c0 − gC(1 + |a|+ |b|)

)
hη(H) + hη(H)Khη(H). (A.6)

Next, we decompose

hη(Hg)[Hg, iA]hη(Hg) = hη(H)[Hg, iA]hη(H)

+ (hη(Hg)− hη(H))[Hg, iA]hη(Hg) + hη(H)[Hg, iA](hη(Hg)− hη(H)). (A.7)

Recalling (A.4), the |H|
1
2 -boundedness of V , and the H-boundedness of [V, iA], and noting

that ‖hη(Hg)−hη(H)‖ . 1
ηg, we easily find that the last two right-hand side terms in (A.7)

have operator norm bounded by gC
η (1 + |a|+ |b|)3/2. Combined with (A.6), this yields

hη(Hg)[Hg, iA]hη(Hg) ≥
(
c0 − gC

η (1 + |a|+ |b|)
3
2

)
hη(Hg) + hη(H)Khη(H).

Now multiplying both sides with 1Jη(Hg), the conclusion (ii) follows. �
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An important question concerns the perturbation of an eigenvalue embedded in contin-
uous spectrum [46]. In view of formal second-order perturbation theory, Fermi’s golden
rule is expected to provide an instability criterion, cf. (A.8) below, and various works have
shown how Mourre’s theory can be used to establish it rigorously, e.g. [1, 31, 20]. Revis-
iting [31, Theorem 8.8], we can derive for instance the following statement, where care is
taken again not to assume that [H, iA] is H-bounded; the outline of the proof is included
for convenience.

Theorem A.7 (Instability of embedded bound states). Let A be a self-adjoint operator
on a Hilbert space H, let H be a self-adjoint operator of class C2(A), let V be a symmet-
ric |H|1/2-bounded operator, and assume that:
— the commutator [H, iA] satisfies (A.4);
— the commutators [V, iA] and [[V, iA], iA] extend as H-bounded operators;
— H satisfies a Mourre estimate with respect to A on a bounded open interval J ⊂ R.
In addition, assume that H has an eigenvalue E0 ∈ J , denote by Π0 the associated eigen-
projector, let Π̄0 := 1 − Π0, assume that the eigenspace satisfies Ran(Π0) ⊂ D(A2) and
Ran(AΠ0) ⊂ D(V ), and assume that Fermi’s condition holds, that is, there exists γ0 > 0
such that

lim
ε↓0
=
{

Π0V Π̄0(H − E0 − iε)−1Π̄0VΠ0

}
≥ γ0Π0. (A.8)

Then, there exists g0 > 0 and a neighborhood J0 ⊂ J of E0 such that the perturbed operator
Hg = H + gV satisfies

σpp(Hg) ∩ J0 = ∅ for all 0 < |g| ≤ g0. ♦

Proof. Note that all assumptions of Lemma A.6 are satisfied, hence the perturbed oper-
ator Hg is of class C2(A) and satisfies a Mourre estimate on J ′ with respect to A for all
J ′ b J and g small enough. Consider the reduced perturbed operator H̄g := Π̄0HgΠ̄0 on
the range Ran(Π̄0), and set also H̄ := Π̄0HΠ̄0, V̄ := Π̄0V Π̄0, Ā := Π̄0AΠ̄0. We follow the
approach in [31, Theorem 8.8] and split the proof into three steps.

Step 1. Proof that H̄g is of class C2(Ā) for all g and that there exists g0 > 0 and an open
interval J0 ⊂ J with E0 ∈ J0 such that for all |g| ≤ g0 the operator H̄g satisfies a strict
Mourre estimate on J0 with respect to Ā. In particular, in view of Theorem A.5(iii), this
entails that H̄g has no eigenvalue in J0 for any |g| ≤ g0.

It is easily checked that reduced operators Ā, H̄, V̄ satisfy all the assumptions of Lemma A.6
on Ran(Π̄0). In particular, in order to ensure that [V̄ , iĀ] and [[V̄ , iĀ], iĀ] are H̄-bounded,
it suffices to decompose

[V̄ , iĀ] = Π̄0[V, iA]Π̄0 − Π̄0VΠ0iAΠ̄0 + Π̄0iAΠ0V Π̄0,

[[V̄ , iĀ], iĀ] = Π̄0[[V, iA], iA]Π̄0 + Π̄0V iAΠ0iAΠ̄0 + Π̄0iAΠ0iAV Π̄0

−Π̄0VΠ0(iA)2Π̄0 − Π̄0(iA)2Π0V Π̄0 + Π̄0VΠ0iAΠ0iAΠ̄0 + Π̄0iAΠ0iAΠ0V Π̄0

+2Π̄0iAΠ0[V, iA]Π̄0 − 2Π̄0[V, iA]Π0iAΠ̄0 − 2Π̄0iAΠ0VΠ0iAΠ̄0,

and to note that our assumptions precisely ensure that the different right-hand side terms
are all H̄-bounded. Applying Lemma A.6, we then deduce that H̄g is of class C2(Ā) for
all g and satisfies a Mourre estimate on J ′ with respect to Ā for all J ′ b J and g small
enough. Next, multiplying both sides of this estimate with 1L(H̄) and using the fact that
1L(H̄) converges strongly to 0 as L → {E0}, we deduce that there is a neighborhood L0
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of E0 on which H̄ satisfies a strict Mourre estimate. The claimed strict Mourre estimate
for H̄g then follows from Lemma A.6(ii) for any J0 b L0 and g small enough.

Step 2. Proof that, if for some |g| ≤ g0 the perturbed operator Hg has an eigenvalue E ∈ J0

with eigenvector ψ, then it satisfies

lim
ε↓0
=
〈
ψ , Π0W Π̄0(H̄g − E − iε)−1Π̄0WΠ0ψ

〉
H

= 0. (A.9)

This observation is found e.g. in [31, Lemma 8.10], but we repeat the proof for convenience.
Decomposing 1 = Π0 + Π̄0 and using Π0HΠ0 = E0Π0 and Π0HΠ̄0 = 0, the eigenvalue
equation Hgψ = Eψ is equivalent to the system{

gΠ0WΠ0ψ + gΠ0W Π̄0ψ = (E − E0)Π0ψ,
H̄gΠ̄0ψ + gΠ̄0WΠ0ψ = EΠ̄0ψ.

(A.10)

For all ε > 0, the second equation entails

Π̄0ψ = −g(H̄g − E − iε)−1Π̄0WΠ0ψ − iε(H̄g − E − iε)−1Π̄0ψ.

By Step 1, we know that E ∈ J0 cannot be an eigenvalue of H̄g, hence the last right-hand
side term converges strongly to 0 as ε ↓ 0 and we get

Π̄0ψ = −g lim
ε↓0

(H̄g − E − iε)−1Π̄0WΠ0ψ.

Inserting this into the first equation of (A.10), taking the scalar product with ψ, and taking
the imaginary part of both sides, the claim (A.9) follows.

Step 3. Conclusion.
In view of Step 1, as H̄g is of class C2(Ā) and satisfies a strict Mourre estimate on J0 for
all |g| ≤ g0, Mourre’s theory entails the validity of the following strong limiting absorption
principle, cf. [2, 45]: for all s > 1

2 and J ′0 b J0, the limit limε↓0〈Ā〉−s(H̄g −E− iε)−1〈Ā〉−s
exists in the weak operator topology, uniformly for E ∈ J ′0 and |g| ≤ g0. (Note that we
could not find a reference for the uniformity with respect to g, but it is easily checked
to follow from [2, 45] by further making use of the H-boundedness of V and [V, iA].)
Decomposing iAΠ̄0VΠ0 = V iAΠ0−[V, iA]Π0−iAΠ0VΠ0 and noting that our assumptions
ensure that the different right-hand side terms are all bounded, we find that 〈A〉Π̄0WΠ0

is bounded (and finite-rank), hence the limiting absorption principle entails that the limit

Fg(E) := lim
ε↓0

Π0V Π̄0(H̄g − E − iε)−1Π̄0VΠ0

= lim
ε↓0

(
Π0V Π̄0〈Ā〉

)(
〈Ā〉−1(H̄g − E − iε)−1〈Ā〉−1

)(
〈Ā〉Π̄0VΠ0

)
exists, uniformly for E ∈ J ′0 and |g| ≤ g0. This ensures in particular that the limit in (A.8)
exists. Assumption (A.8) takes the form =F0(E0) ≥ γ0Π0, and therefore by uniformity
there exists g′0 > 0 and a neighborhood J ′′0 of E0 such that

=Fg(E) ≥ 1
2γ0Π0 for all E ∈ J ′′0 and |g| ≤ g′0.

In view of Step 2, this implies that for |g| ≤ g′0 any eigenvalue of Hg in J ′′0 must have
eigenvector in Ran(Π̄0). However, this would entail that it is actually an eigenvalue of the
reduced operator H̄g, which is excluded by Step 1. �
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Moreover, if there is enough analyticity for the analytic continuation of the resolvent, the
perturbed embedded eigenvalue is actually expected to become a complex resonance when
dissolving in the absolutely continuous spectrum [46]. This resonance then describes the
metastability of the bound state and the quasi-exponential decay of the system away from
this state. While this is not guaranteed in the general framework of Mourre’s theory, the
following result by Cattaneo, Graf, and Hunziker [8] shows how additional regularity allows
to develop an approximate dynamical resonance theory. We emphasize that C2-regularity
is no longer enough here.

Theorem A.8 (Approximate dynamical resonances; [8]). Let A and H be self-adjoint
operators on a Hilbert space H, let V be symmetric and |H|1/2-bounded, and assume that
for some ν ≥ 0,
— the unitary group generated by A leaves the domain of H invariant, cf. (A.2);
— for all 0 ≤ j ≤ 5 + ν, the iterated commutators adjiA(H) and adjiA(V ) extend as H-

bounded operators;
— H satisfies a Mourre estimate with respect to A on a bounded open interval J ⊂ R.
In addition, assume that H has a simple eigenvalue E0 ∈ J with normalized eigenvector ψ0,
denote by Π̄0 the orthogonal projection on {ψ0}⊥, and assume that Fermi’s condition is
satisfied, that is,

γ0 := lim
ε↓0
=
〈

Π̄0(V ψ0) , (H − E0 − iε)−1Π̄0(V ψ0)
〉
> 0. (A.11)

Then, the perturbed operator Hg = H + gV satisfies the following quasi-exponential decay
law: for all smooth cut-off functions h supported in J and equal to 1 in a neighborhood
of E0, and for all g small enough, there holds for all t ≥ 0,∣∣∣〈ψ0, e

−iHgth(Hg)ψ0

〉
− e−izgt

∣∣∣ .h,γ0 { g2|log g|〈t〉−ν , if ν ≥ 0;
g2〈t〉−(ν−1), if ν ≥ 1;

where the dynamical resonance zg is given by Fermi’s golden rule,

zg = E0 + g〈ψ0, V ψ0〉 − g2 lim
ε↓0

〈
Π̄0(V ψ0) ,

(
H − E0 − iε

)−1
Π̄0(V ψ0)

〉
.

In particular, in view of (A.11), this satisfies =zg < 0. ♦
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