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Introduction

elastic structure immersed in an incompressible viscous fluid

fluid and structure contained in Ω ⊂ R3 a fixed bounded and connected set

fluid model: Navier-Stokes equations

solid model: linearized elasticity equation

coupling through conditions on the interface

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Modelling

Fluid equations 

∂tu + (u · ∇)u −∇ · T(u, p) = 0 in ΩF (t)

∇ · u = 0 in ΩF (t)

u = 0 on ∂Ω

u(0, ·) = u0 in ΩF

u: eulerian velocity, p pressure

T(u, p) : Cauchy stress tensor given by

T(u, p) = 2µε(u)− p Id

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Modelling

Solid equation

{
∂ttξ −∇ · Σ(ξ) = 0 in ΩS

ξ(0, ·) = 0 in ΩS , ∂tξ(0, ·) = ξ1 in ΩS .

ξ: elasticity displacement

Σ(ξ) : linear elasticity tensor
Σ(ξ) = 2λε(ξ) + λ′(∇ · ξ)Id

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Modelling

Coupling conditions {
u ◦ X = ∂tξ on ∂ΩS

T(u, p) ◦ X cof∇X n = Σ(ξ)n on ∂ΩS

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Modelling

Coupling conditions {
u ◦ X = ∂tξ on ∂ΩS

T(u, p) ◦ X cof∇X n = Σ(ξ)n on ∂ΩS

Definition of the flow

for all y ∈ ΩF {
∂tX (t, y) = u(t,X (t, y)), t ∈ (0,T )

X (0, y) = y
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Modelling

Coupling conditions {
u ◦ X = ∂tξ on ∂ΩS

T(u, p) ◦ X cof∇X n = Σ(ξ)n on ∂ΩS

Definition of the flow

for all y ∈ ΩF {
∂tX (t, y) = u(t,X (t, y)), t ∈ (0,T )

X (0, y) = y

Remarks

Eulerian point of view in the fluid versus lagrangian point of view in the structure.

Fluid equations are given on a moving and unknown domain.

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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A priori energy estimate



∂tu + (u · ∇)u −∇ · T(u, p) = 0 in ΩF (t)

∇ · u = 0 in ΩF (t)

∂ttξ −∇ · Σ(ξ) = 0 in ΩS

u = 0 on ∂Ω

u ◦ X = ∂tξ on ∂ΩS

T(u, p) ◦ X cof∇X n = Σ(ξ) n on ∂ΩS

Energy spaces:

u ∈ “L∞(0,T ; L2(ΩF (t))) ∩ L2(0,T ;H1(ΩF (t)))”,

ξ ∈W 1,∞(0,T ; L2(ΩS (0))) ∩ L∞(0,T ;H1(ΩS (0))).

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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A priori energy estimate

Energy spaces:

u ∈ “L∞(0,T ; L2(ΩF (t))) ∩ L2(0,T ;H1(ΩF (t)))”,

ξ ∈W 1,∞(0,T ; L2(ΩS (0))) ∩ L∞(0,T ;H1(ΩS (0))).

This regularity is insufficient:

The set ΩS (t) = (Id + ξ(t))(ΩS (0)) is not Lipschitz.

The flow in the structure domain Id + ξ(t, ·) is a priori not invertible.

We can instantaneously have self-contact, loss of orientation and collision with the boundary.

Self-contact Collision

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Remarks

Mismatch between parabolic and hyperbolic regularity

∂tu −∆u = 0 in (0,T )× ΩF

∂ttξ −∆ξ = 0 in (0,T )× ΩS

u = ∂tξ on (0,T )× Σ

∇u · n = ∇ξ · n on (0,T )× Σ

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Remarks

Mismatch between parabolic and hyperbolic regularity

∂tu −∆u = 0 in (0,T )× ΩF

∂ttξ −∆ξ = 0 in (0,T )× ΩS

u = ∂tξ on (0,T )× Σ

∇u · n = ∇ξ · n on (0,T )× Σ

Energy-level space:

ξ ∈ L∞(H1(ΩS )) ∩W 1,∞(L2(ΩS )), u ∈ L∞(L2(ΩF )) ∩ L2(H1(ΩF ))
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Remarks

Mismatch between parabolic and hyperbolic regularity

∂tu −∆u = 0 in (0,T )× ΩF

∂ttξ −∆ξ = 0 in (0,T )× ΩS

u = ∂tξ on (0,T )× Σ

∇u · n = ∇ξ · n on (0,T )× Σ

Energy-level space:

ξ ∈ L∞(H1(ΩS )) ∩W 1,∞(L2(ΩS )), u ∈ L∞(L2(ΩF )) ∩ L2(H1(ΩF ))

Remark: sense of the boundary conditions ?

[Barbu, Grujic, Lasiecka, Tuffaha (2007)]
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Remarks

Mismatch between parabolic and hyperbolic regularity

∂tu −∆u = 0 in (0,T )× ΩF

∂ttξ −∆ξ = 0 in (0,T )× ΩS

u = ∂tξ on (0,T )× Σ

∇u · n = ∇ξ · n on (0,T )× Σ

Energy-level space:

ξ ∈ L∞(H1(ΩS )) ∩W 1,∞(L2(ΩS )), u ∈ L∞(L2(ΩF )) ∩ L2(H1(ΩF ))

Remark: sense of the boundary conditions ?

[Barbu, Grujic, Lasiecka, Tuffaha (2007)]

Hidden regularity for ξ:

If ∂tξ belongs to L2(H1/2(Σ)), then ∇ξ · n belongs to L2(H−1/2(Σ))

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Change of variables for the fluid equation



∂tu + (u · ∇)u −∇ · T(u, p) = 0 in ΩF (t)

∇ · u = 0 in ΩF (t)

u = 0 on ∂Ω

u ◦ X = ∂tξ on ∂ΩS

T(u, p) ◦ X cof∇X n = Σ(ξ) n on ∂ΩS
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Introduction and main result
Sketch of the proof

Conclusion

Change of variables for the fluid equation



∂tu + (u · ∇)u −∇ · T(u, p) = 0 in ΩF (t)

∇ · u = 0 in ΩF (t)

u = 0 on ∂Ω

u ◦ X = ∂tξ on ∂ΩS

T(u, p) ◦ X cof∇X n = Σ(ξ) n on ∂ΩS

We set in (0,T )× ΩF

v(t, y) = u(t,X (t, y)), q(t, y) = p(t,X (t, y))
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Change of variables for the fluid equation



∂tu + (u · ∇)u −∇ · T(u, p) = 0 in ΩF (t)

∇ · u = 0 in ΩF (t)

u = 0 on ∂Ω

u ◦ X = ∂tξ on ∂ΩS

T(u, p) ◦ X cof∇X n = Σ(ξ) n on ∂ΩS

We set in (0,T )× ΩF

v(t, y) = u(t,X (t, y)), q(t, y) = p(t,X (t, y))

and we get 

∂tv −∇ · TX (v , q) = 0 in ΩF

∇v : Cof(∇X ) = 0 in ΩF

v = 0 on ∂Ω

v = ∂tξ on ∂ΩS

TX (v , q) n = Σ(ξ)n on ∂ΩS

where
TX (v , q) := [(∇v) Cof(∇X )∗ + Cof(∇X )(∇v)∗ − qId] Cof(∇X ).

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Main result

M.B., S. Guerrero, T. Takahashi, Nonlinearity (2019)

Hypotheses:

d(ΩS , ∂Ω) > 0

u0 ∈ H2(ΩF ), ξ1 ∈ H1+1/8(ΩS )

compatibility conditions on the initial conditions

Theorem:

There exists a time T > 0 depending on ‖u0‖H2(ΩF ) and ‖ξ1‖H9/8(ΩS ) such that our system admits

a unique solution (X , v , q, ξ) defined in (0,T ) in the following spaces:

v ∈ C1(L2(ΩF )) ∩ H1(H1(ΩF )) ∩ C0(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

q ∈ C0(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

ξ ∈ C2(L2(ΩS )) ∩ C1(H1+1/8(ΩS )) ∩ C0(H2+1/8(ΩS ))

Moreover, X (t, ·) : ΩF → ΩF (t) is a diffeomorphism, for all t ∈ (0,T ).

M. Boulakia LJLL, Sorbonne Université and Inria Paris



Introduction and main result
Sketch of the proof

Conclusion

Main result

M.B., S. Guerrero, T. Takahashi, Nonlinearity (2019)

Hypotheses:

d(ΩS , ∂Ω) > 0

u0 ∈ H2(ΩF ), ξ1 ∈ H1+1/8(ΩS )

compatibility conditions on the initial conditions

Theorem:

There exists a time T > 0 depending on ‖u0‖H2(ΩF ) and ‖ξ1‖H9/8(ΩS ) such that our system admits
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v ∈ C1(L2(ΩF )) ∩ H1(H1(ΩF )) ∩ C0(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

q ∈ C0(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

ξ ∈ C2(L2(ΩS )) ∩ C1(H1+1/8(ΩS )) ∩ C0(H2+1/8(ΩS ))

Moreover, X (t, ·) : ΩF → ΩF (t) is a diffeomorphism, for all t ∈ (0,T ).

Remarks:

The regularity of the initial conditions is preserved over time.

∇X ∈ H1(H3/2+ε(ΩF )) ↪→ H1(C0(ΩF )) with ε = 1/8 : ‖∇X − Id‖C0([0,T ]×ΩF ) ≤ CT 1/2

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Main result

M.B., S. Guerrero, T. Takahashi, Nonlinearity (2019)

Hypotheses:

d(ΩS , ∂Ω) > 0

u0 ∈ H2(ΩF ), ξ1 ∈ H1+1/8(ΩS )

compatibility conditions on the initial conditions

Theorem:

There exists a time T > 0 depending on ‖u0‖H2(ΩF ) and ‖ξ1‖H9/8(ΩS ) such that our system admits
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ξ ∈ C2(L2(ΩS )) ∩ C1(H1+1/8(ΩS )) ∩ C0(H2+1/8(ΩS ))

Moreover, X (t, ·) : ΩF → ΩF (t) is a diffeomorphism, for all t ∈ (0,T ).

Other results:

[Coutand, Shkoller (2005)]: more regular initial conditions

[Kukavica, Tuffaha (2012)], [Raymond, Vanninathan (2014)]: periodic boundary conditions, flat
initial interface.

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Linearization of the system
Fixed point argument for the linear system
End of the proof

Linearization

We take X̂ in the set

BM =
{
X̂ ∈ XT := C 2(L2(ΩF )) ∩ H2(H1(ΩF )) ∩ C 1(H2(ΩF )) ∩ H1(H5/2+1/8(ΩF ))

‖X̂‖XT
≤ M, X̂ (0, ·) = Id and ∂t X̂ (0, ·) = u0 in ΩF

}


∂tv −∇ · TX (v , q) = 0 in (0,T )× ΩF

∇v : Cof(∇X ) = 0 in (0,T )× ΩF

∂ttξ −∇ · Σ(ξ) = 0 in (0,T )× ΩS

v = 0 on (0,T )× ∂Ω

v = ∂tξ on (0,T )× ∂ΩS

TX (v , q) n = Σ(ξ) n on (0,T )× ∂ΩS

v(0, ·) = u0 in ΩF , ξ(0, ·) = 0 in ΩS , ∂tξ(0, ·) = ξ1 in ΩS .

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Existence and uniqueness of solution for this system.

Fixed point for the map Λ : X̂ ∈ BM → X ∈ BM where X (t, ·) = Id +

∫ t

0
v(s, ·) ds.

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Linearization of the system
Fixed point argument for the linear system
End of the proof

Two subproblems

We consider the following two subproblems:


∂ttξ −∇ · Σ(ξ) = 0 in (0,T )× ΩS

ξ(t, ·) =

∫ t

0

v(s, ·) ds on (0,T )× ∂ΩS

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1 in ΩS
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v = 0 on (0,T )× ∂Ω

TX̂ (v , q) n = Σ(ξ) n on (0,T )× ∂ΩS

v(0, ·) = u0 in ΩF .

We take (ṽ , q̃) and we introduce two new subproblems:


∂ttξ −∇ · Σ(ξ) = 0 in (0,T )× ΩS

ξ(t, ·) =

∫ t

0

ṽ(s, ·) ds on (0,T )× ∂ΩS

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1 in ΩS
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∂tv −∇ · T(v , q) = F1(ṽ , q̃) in (0,T )× ΩF

∇ · v = F2(ṽ , q̃) in (0,T )× ΩF

v = 0 on (0,T )× ∂Ω

T(v , q) n = Σ(ξ) n + F3(ṽ , q̃) on (0,T )× ∂ΩS

v(0, ·) = u0 in ΩF .

with

F1(ṽ , q̃) = ∇ · (TX̂ (ṽ , q̃)− T(ṽ , q̃)), F2(ṽ , q̃) = ∇v : (Id− Cof(∇X̂ )), F3(ṽ , q̃) = (T(ṽ , q̃)− TX̂ (ṽ , q̃)) n
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Two subproblems

We consider the following two subproblems:


∂ttξ −∇ · Σ(ξ) = 0 in (0,T )× ΩS

ξ(t, ·) =

∫ t

0

v(s, ·) ds on (0,T )× ∂ΩS

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1 in ΩS



∂tv −∇ · TX̂ (v , q) = 0 in (0,T )× ΩF

∇v : Cof(∇X̂ ) = 0 in (0,T )× ΩF

v = 0 on (0,T )× ∂Ω

TX̂ (v , q) n = Σ(ξ) n on (0,T )× ∂ΩS

v(0, ·) = u0 in ΩF .

We take (ṽ , q̃) and we introduce two new subproblems:


∂ttξ −∇ · Σ(ξ) = 0 in (0,T )× ΩS

ξ(t, ·) =

∫ t

0

ṽ(s, ·) ds on (0,T )× ∂ΩS

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1 in ΩS



∂tv −∇ · T(v , q) = F1(ṽ , q̃) in (0,T )× ΩF

∇ · v = F2(ṽ , q̃) in (0,T )× ΩF

v = 0 on (0,T )× ∂Ω

T(v , q) n = Σ(ξ) n + F3(ṽ , q̃) on (0,T )× ∂ΩS

v(0, ·) = u0 in ΩF .

with

F1(ṽ , q̃) = ∇ · (TX̂ (ṽ , q̃)− T(ṽ , q̃)), F2(ṽ , q̃) = ∇v : (Id− Cof(∇X̂ )), F3(ṽ , q̃) = (T(ṽ , q̃)− TX̂ (ṽ , q̃)) n

Fixed point for the map
(ṽ , q̃) ∈ S1 × S2 → (v , q) ∈ S1 × S2
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Very regular solution for the linear system with smoother initial conditions

We define
S1 = H2(L2(ΩF )) ∩ H1(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

and
S2 = H1(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

and we assume that u0 ∈ H3(ΩF ) and ξ1 ∈ H3/2+1/8(ΩS ) (+ compatibility conditions).
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Very regular solution for the linear system with smoother initial conditions

We define
S1 = H2(L2(ΩF )) ∩ H1(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

and
S2 = H1(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

and we assume that u0 ∈ H3(ΩF ) and ξ1 ∈ H3/2+1/8(ΩS ) (+ compatibility conditions).

Main theorem:
v ∈ C1(L2(ΩF )) ∩ C0(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

q ∈ C0(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

u0 ∈ H2(ΩF ), ξ1 ∈ H1+1/8(ΩS )
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Very regular solution for the linear system with smoother initial conditions

We define
S1 = H2(L2(ΩF )) ∩ H1(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

and
S2 = H1(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

and we assume that u0 ∈ H3(ΩF ) and ξ1 ∈ H3/2+1/8(ΩS ) (+ compatibility conditions).

Main theorem:
v ∈ C1(L2(ΩF )) ∩ C0(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

q ∈ C0(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

u0 ∈ H2(ΩF ), ξ1 ∈ H1+1/8(ΩS )

Two steps:

If (ṽ , q̃) ∈ S1 × S2, then (v , q) ∈ S1 × S2.

(ṽ , q̃)→ (v , q) is a contraction: ‖(v , q)‖S1×S2
≤ CTαM‖(ṽ , q̃)‖S1×S2

when
(u0, ξ1) = (0, 0).
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Regularity result for the elasticity equation: hidden regularity results

[Lions, Lasiecka, Triggiani (1986)] [Raymond, Vanninathan (2014)], [Dehman, Raymond (2015)]

Let w be a solution of 
∂ttw −∆w = 0 in (0,T )× ΩS

w = f on (0,T )× ∂ΩS

w(0) = w0, ∂tw(0) = w1 in ΩS .

We assume that
w0 ∈ H1(ΩS ) and w1 ∈ L2(ΩS )

and
f ∈ H1((0,T )× ∂ΩS ).

Then, there exists a solution w such that

w ∈ C([0,T ];H1(ΩS )) ∩ C1([0,T ]; L2(ΩS ))

And the normal derivative of w satisfies

∇w n ∈ L2((0,T )× ∂ΩS ).
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Regularity result for the elasticity equation: hidden regularity results

[Lions, Lasiecka, Triggiani (1986)] [Raymond, Vanninathan (2014)], [Dehman, Raymond (2015)]

Let w be a solution of 
∂ttw −∆w = 0 in (0,T )× ΩS

w = f on (0,T )× ∂ΩS

w(0) = w0, ∂tw(0) = w1 in ΩS .

Let α ∈ [0, 2]. We assume that

w0 ∈ Hα(ΩS ) and w1 ∈ Hα−1(ΩS )

and
f ∈ Hα((0,T )× ∂ΩS ).

Then, there exists a solution w such that

w ∈ C([0,T ];Hα(ΩS )) ∩ C1([0,T ];Hα−1(ΩS ))

And the normal derivative of w satisfies

∇w n ∈ Hα−1((0,T )× ∂ΩS ).
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Regularity results for the subproblems

Hidden regularity result [Lions, Lasiecka, Triggiani (1986)], [Raymond, Vanninathan (2014)],

[Dehman, Raymond (2015)]
∂tt(∂tξ)−∇ · Σ(∂tξ) = 0 in (0,T )× ΩS

∂tξ = ṽ on (0,T )× ∂ΩS

∂tξ(0, ·) = 0, ∂ttξ(0, ·) = 0 in ΩS

We have ṽ ∈ H3/2+1/8((0,T )× ∂ΩS ). We deduce that

‖∂tξ‖C0(H3/2+1/8(ΩS ))∩C1(H1/2+1/8(ΩS ))
+ ‖Σ(∂tξ)n‖

H1/2+1/8((0,T )×∂ΩS )
≤ CTα‖ṽ‖S1

.
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Regularity results for the subproblems

Hidden regularity result [Lions, Lasiecka, Triggiani (1986)], [Raymond, Vanninathan (2014)],

[Dehman, Raymond (2015)]
∂tt(∂tξ)−∇ · Σ(∂tξ) = 0 in (0,T )× ΩS

∂tξ = ṽ on (0,T )× ∂ΩS

∂tξ(0, ·) = 0, ∂ttξ(0, ·) = 0 in ΩS

We have ṽ ∈ H3/2+1/8((0,T )× ∂ΩS ). We deduce that

‖∂tξ‖C0(H3/2+1/8(ΩS ))∩C1(H1/2+1/8(ΩS ))
+ ‖Σ(∂tξ)n‖

H1/2+1/8((0,T )×∂ΩS )
≤ CTα‖ṽ‖S1

.

Regularity result for Stokes problem [Grubb, Solonnikov (1991)]

∂t(∂tv)−∇ · T(∂tv , ∂tq) = ∂tF1(ṽ , q̃) in (0,T )× ΩF

∇ · (∂tv) = ∂tF2(ṽ , q̃) in (0,T )× ΩF

∂tv = 0 on (0,T )× ∂Ω

T(∂tv , ∂tq) n = Σ(∂tξ) n + ∂tF3(ṽ , q̃) on (0,T )× ∂ΩS

∂tv(0, ·) = 0 in ΩF .

We deduce that

‖∂tv‖L2(H2(ΩF ))∩H1(L2(ΩF )) + ‖∂tq‖L2(H1(ΩF )) ≤ C(‖Σ(∂tξ) n‖
H1/2((0,T )×∂ΩS )

+ Tα‖(ṽ , q̃)‖S1×S2
)
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Regularity results for the subproblems

Thus, we have

‖ξ‖
C1(H3/2+1/8(ΩS ))∩C2(H1/2+1/8(ΩS ))

+ ‖v‖H1(H2(ΩF ))∩H2(L2(ΩF )) + ‖q‖H1(H1(ΩF )) ≤ CTα‖(ṽ , q̃)‖S1×S2
.
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Regularity results for the subproblems

Thus, we have

‖ξ‖
C1(H3/2+1/8(ΩS ))∩C2(H1/2+1/8(ΩS ))

+ ‖v‖H1(H2(ΩF ))∩H2(L2(ΩF )) + ‖q‖H1(H1(ΩF )) ≤ CTα‖(ṽ , q̃)‖S1×S2
.

It remains to get more spatial regularity:

ξ ∈ C 0(H5/2+1/8(ΩS )), v ∈ L2(H5/2+1/8(ΩF )) and q ∈ L2(H3/2+1/8(ΩF )):
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Regularity results for the subproblems

Thus, we have

‖ξ‖
C1(H3/2+1/8(ΩS ))∩C2(H1/2+1/8(ΩS ))

+ ‖v‖H1(H2(ΩF ))∩H2(L2(ΩF )) + ‖q‖H1(H1(ΩF )) ≤ CTα‖(ṽ , q̃)‖S1×S2
.

It remains to get more spatial regularity:

ξ ∈ C 0(H5/2+1/8(ΩS )), v ∈ L2(H5/2+1/8(ΩF )) and q ∈ L2(H3/2+1/8(ΩF )):
−∇ · Σ(ξ) = −∂ttξ in (0,T )× ΩS

ξ(t, ·) =

∫ t

0

ṽ(s, ·) ds on (0,T )× ∂ΩS

We get:

‖ξ‖
C0(H5/2+1/8(ΩS ))

≤ C(Tα‖(ṽ , q̃)‖S1×S2
+ T 1/2‖ṽ‖

L2(H5/2+1/8(ΩF ))
)

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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Regularity results for the subproblems

Thus, we have

‖ξ‖
C1(H3/2+1/8(ΩS ))∩C2(H1/2+1/8(ΩS ))

+ ‖v‖H1(H2(ΩF ))∩H2(L2(ΩF )) + ‖q‖H1(H1(ΩF )) ≤ CTα‖(ṽ , q̃)‖S1×S2
.

It remains to get more spatial regularity:

ξ ∈ C 0(H5/2+1/8(ΩS )), v ∈ L2(H5/2+1/8(ΩF )) and q ∈ L2(H3/2+1/8(ΩF )):
−∇ · Σ(ξ) = −∂ttξ in (0,T )× ΩS

ξ(t, ·) =

∫ t

0

ṽ(s, ·) ds on (0,T )× ∂ΩS

We get:

‖ξ‖
C0(H5/2+1/8(ΩS ))

≤ C(Tα‖(ṽ , q̃)‖S1×S2
+ T 1/2‖ṽ‖

L2(H5/2+1/8(ΩF ))
)



−∇ · T(v , q) = −∂tv + F1(ṽ , q̃) in (0,T )× ΩF

∇ · v = F2(ṽ , q̃) in (0,T )× ΩF

v = 0 on (0,T )× ∂Ω

T(v , q) n = Σ(ξ) n + F3(ṽ , q̃) on (0,T )× ∂ΩS .

We have:

‖v‖
L2(H5/2+1/8(ΩF ))

+ ‖q‖
L2(H3/2+1/8(ΩF ))

≤ C(Tα‖(ṽ , q̃)‖S1×S2
+ ‖Σ(ξ) n‖

L2(H1+1/8(∂ΩS ))
)
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Very regular solution for the linear system with smoother initial conditions

Proposition:

We assume that u0 ∈ H3(ΩF ) and ξ1 ∈ H3/2+1/8(ΩS ) (+ compatibility conditions).
There exists a time T > 0 depending on M such that the linear problem admits a unique solution:

v ∈ H2(L2(ΩF )) ∩ H1(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF )) := S1

q ∈ H1(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF )) := S2

ξ ∈ C2(H1/2+1/8(ΩS )) ∩ C0(H5/2+1/8(ΩS )).
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Very regular solution for the linear system with smoother initial conditions

Proposition:

We assume that u0 ∈ H3(ΩF ) and ξ1 ∈ H3/2+1/8(ΩS ) (+ compatibility conditions).
There exists a time T > 0 depending on M such that the linear problem admits a unique solution:

v ∈ H2(L2(ΩF )) ∩ H1(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF )) := S1

q ∈ H1(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF )) := S2

ξ ∈ C2(H1/2+1/8(ΩS )) ∩ C0(H5/2+1/8(ΩS )).

Main theorem:
u0 ∈ H2(ΩF ), ξ1 ∈ H1+1/8(ΩS )

v ∈ R1 = C1(L2(ΩF )) ∩ H1(H1(ΩF )) ∩ C0(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

q ∈ R2 = C0(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

ξ ∈ C2(L2(ΩS )) ∩ C1(H1+1/8(ΩS )) ∩ C0(H2+1/8(ΩS ))
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Very regular solution for the linear system with smoother initial conditions

Proposition:

We assume that u0 ∈ H3(ΩF ) and ξ1 ∈ H3/2+1/8(ΩS ) (+ compatibility conditions).
There exists a time T > 0 depending on M such that the linear problem admits a unique solution:

v ∈ H2(L2(ΩF )) ∩ H1(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF )) := S1

q ∈ H1(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF )) := S2

ξ ∈ C2(H1/2+1/8(ΩS )) ∩ C0(H5/2+1/8(ΩS )).

Main theorem:
u0 ∈ H2(ΩF ), ξ1 ∈ H1+1/8(ΩS )

v ∈ R1 = C1(L2(ΩF )) ∩ H1(H1(ΩF )) ∩ C0(H2(ΩF )) ∩ L2(H5/2+1/8(ΩF ))

q ∈ R2 = C0(H1(ΩF )) ∩ L2(H3/2+1/8(ΩF ))

ξ ∈ C2(L2(ΩS )) ∩ C1(H1+1/8(ΩS )) ∩ C0(H2+1/8(ΩS ))

We prove that the solution (v , q) satisfies estimates in R1 ×R2 of the form

‖(v , q)‖R1×R2
≤ C(‖u0‖H2(ΩF ) + ‖ξ1‖H1+1/8 )

in order to relax the regularity of the initial conditions.
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Introduction and main result
Sketch of the proof

Conclusion

Linearization of the system
Fixed point argument for the linear system
End of the proof

More general initial conditions

We prove that this very regular solution satisfies

‖v‖C1(L2(ΩF ))∩H1(H1(ΩF )) + ‖v‖C0(H2(ΩF ))∩L2(H5/2+1/8(ΩF ))

+ ‖ξ‖C2(L2(ΩS ))∩C1(H1+1/8(ΩS )) + ‖ξ‖C0(H2+1/8(ΩS )) ≤ C(‖u0‖H2(ΩF ) + ‖ξ1‖H1+1/8(ΩS ))

in order to relax the regularity of the initial conditions.

energy estimate satisfied by (v , ξ),

energy estimate satisfied by (∂tv , ∂tξ),

elliptic estimates

more spatial regularity obtained thanks to

hidden regularity results [Raymond, Vanninathan (2014)]

regularity results for Stokes system.
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More general initial conditions

We prove that this very regular solution satisfies

‖v‖C1(L2(ΩF ))∩H1(H1(ΩF )) + ‖v‖C0(H2(ΩF ))∩L2(H5/2+1/8(ΩF ))

+ ‖ξ‖C2(L2(ΩS ))∩C1(H1+1/8(ΩS )) + ‖ξ‖C0(H2+1/8(ΩS )) ≤ C(‖u0‖H2(ΩF ) + ‖ξ1‖H1+1/8(ΩS ))

in order to relax the regularity of the initial conditions.

Arguments:

energy estimate satisfied by (v , ξ),

energy estimate satisfied by (∂tv , ∂tξ),

elliptic estimates

more spatial regularity obtained thanks to

hidden regularity results [Raymond, Vanninathan (2014)]

regularity results for Stokes system.
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More general initial conditions

We prove that this very regular solution satisfies

‖v‖C1(L2(ΩF ))∩H1(H1(ΩF )) + ‖v‖C0(H2(ΩF ))∩L2(H5/2+1/8(ΩF ))

+ ‖ξ‖C2(L2(ΩS ))∩C1(H1+1/8(ΩS )) + ‖ξ‖C0(H2+1/8(ΩS )) ≤ C(‖u0‖H2(ΩF ) + ‖ξ1‖H1+1/8(ΩS ))

in order to relax the regularity of the initial conditions.

Arguments:

energy estimate satisfied by (v , ξ),

energy estimate satisfied by (∂tv , ∂tξ),

elliptic estimates

more spatial regularity obtained thanks to

hidden regularity results [Raymond, Vanninathan (2014)]

regularity results for Stokes system.

M. Boulakia LJLL, Sorbonne Université and Inria Paris
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More general initial conditions

We prove that this very regular solution satisfies

‖v‖C1(L2(ΩF ))∩H1(H1(ΩF )) + ‖v‖C0(H2(ΩF ))∩L2(H5/2+1/8(ΩF ))

+ ‖ξ‖C2(L2(ΩS ))∩C1(H1+1/8(ΩS )) + ‖ξ‖C0(H2+1/8(ΩS )) ≤ C(‖u0‖H2(ΩF ) + ‖ξ1‖H1+1/8(ΩS ))

in order to relax the regularity of the initial conditions.

Arguments:

energy estimate satisfied by (v , ξ),

energy estimate satisfied by (∂tv , ∂tξ),

elliptic estimates

more spatial regularity obtained thanks to

hidden regularity results [Raymond, Vanninathan (2014)]

regularity results for Stokes system.
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More general initial conditions

We prove that this very regular solution satisfies

‖v‖C1(L2(ΩF ))∩H1(H1(ΩF )) + ‖v‖C0(H2(ΩF ))∩L2(H5/2+1/8(ΩF ))

+ ‖ξ‖C2(L2(ΩS ))∩C1(H1+1/8(ΩS )) + ‖ξ‖C0(H2+1/8(ΩS )) ≤ C(‖u0‖H2(ΩF ) + ‖ξ1‖H1+1/8(ΩS ))

in order to relax the regularity of the initial conditions.

Arguments:

energy estimate satisfied by (v , ξ),

energy estimate satisfied by (∂tv , ∂tξ),

elliptic estimates

more spatial regularity obtained thanks to

hidden regularity results [Raymond, Vanninathan (2014)]

regularity results for Stokes system.

At last, we use a fixed point argument to conclude.
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Concluding remarks

Global in time smooth solution with small data ?

Incompressible fluid and damped wave equation

[Ignatova, Kukavica, Lasiecka, Tuffaha (2014, 2017)]

Extension to the nonlinear elasticity equation ?

[Coutand, Shkoller (2006)], [M.B., Guerrero (2017)]
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