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Starting point :

Suspension of n > 1 small solid spheres in a viscous flow.

- The solid particles induce resistance to strain.

- Can it be seen at a macroscopic scale as an extra viscosity ?
Hope :

- Averaging to take place as n — oo

- Suspension to be described by a single fluid model with some
effective viscosity.
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Suspension of n > 1 small solid spheres in a viscous flow.

- The solid particles induce resistance to strain.

- Can it be seen at a macroscopic scale as an extra viscosity ?
Hope :

- Averaging to take place as n — oo

- Suspension to be described by a single fluid model with some
effective viscosity.

Topic of great interest in rheology.
Many experiments (lab or computer) with sheared suspensions.



Measurement of the effective viscosity (assuming it exists !) :

energy dissipation of the suspension

P = energy dissipation of the fluid alone

Crucial parameter : solid volume fraction ¢.

- ¢ small : dilute suspensions.
- ¢ ~ ¢, maximal flowable volume fraction : dense suspensions.



Measurement of the effective viscosity (assuming it exists !)

energy dissipation of the suspension

A = energy dissipation of the fluid alone

Crucial parameter : solid volume fraction ¢.

- ¢ small : dilute suspensions.
- ¢ ~ ¢, maximal flowable volume fraction : dense suspensions.
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Suggests a universal behaviour : fiefr = piesr(P/dc).

But far from understood, notably at large ¢ :

- Contact between particles plays a role

- Confinement plays a role as well.

- Non-newtonian behaviour.

Even in idealized models, difficult mathematical questions, related
to percolation/graph theory :

- see [Berlyand et al’05] for finite n.

- Ongoing PhD thesis of Alexandre Girodroux-Lavigne.



Mathematical analysis of dilute suspensions

A simple model, with pure hydrodynamic interactions:
- n spherical particles B; = B(x;, rn).
- Stokes flow in Q, =R3 —U"_,B; :
—puAu, +Vp,=1£f, divu,=0 inQ,
with f in LP(R3) for p large enough.
- Particles are neutrally buoyant (no sedimentation).

No inertia, no thermal fluctuation.

Force- and torque-free. For all i,

/ ou(Un, pn)v ds = / 0u(Un, Pa)V X (x — x;) ds =0
0B;

aB;



- Particles are rigid, with no-slip at the boundary: for all /
u,,]aBI. = u; +w; X (X — X,'), up,wji € ]R3.

- Decay of u, at infinity.



- Particles are rigid, with no-slip at the boundary: for all /
Unlog, = Ui + wi X (x — x;), uj,w; € R3.

- Decay of u, at infinity.

Remark : Snapshot at a given time t.

In fact : x; = x;(t), uj = ui(t), x = u;.

Assumptions made on (x;)1<j<n preserved through time ?

This question is left aside here.



Can we approximate it by an effective fluid equation ?
—div (2ptefr D(terr)) + Vperr =(1 — @), div ter =0 in R3
With fiefr = fefr(X), Lefr 7 1 in the region O of the particles.

We focus on the dilute regime. With |O] = 1, we assume that

T . .
¢ = —nr,‘:’ is small but independent of n

Two subquestions :

Q1 : Exact effective viscosity 7
limu, = uer for some pre ?
n

See [Duerinckx-Gloria'20], [Duerinckx'20], [Jikov et al'1994].



Q2 : Approximate effective viscosity of order k 7
limsup ||up — Uefrl|Lr = o(qSk) for some fiefr, for some p ?
n
In this regime, the hope is to find pef under the form

fhefr = p+ dpa + -+ Kk

where 11; € Sym(Sym,(R3))



Q2 : Approximate effective viscosity of order k 7
limsup ||up — Uefrl|Lr = o(qSk) for some fiefr, for some p ?
n
In this regime, the hope is to find pef under the form

fhefr = p+ dpa + -+ Kk

where 11; € Sym(Sym,(R3))

Q2 may require less assumptions than Q1
on the x;'s (e.g. for the derivation of
Einstein's formula).

Useful as there is no canonical stationary

measure.



First order approximation

. If the suspension is homogeneously distributed in
a (smooth bounded) domain O, and if the interaction between the
particles can be neglected, then a first order approx. is given by

5 .
perr = (1 + §¢) in O



First order approximation

. If the suspension is homogeneously distributed in
a (smooth bounded) domain O, and if the interaction between the
particles can be neglected, then a first order approx. is given by

5 .
pefr = p1(1 + §¢) inO

Mathematical justification 7
- . x; on a periodic grid.

_ . under

1 _
ni=— ) 0x — dx, bounded, =0.
p n; . — p(x)dx, pbounded, suppp=0. (Al)

dy>cn 3, d,= ';f |xi — xj|, c independent of ¢  (A2)
ij



Remark : (Al) includes the case of inhomogeneous distributions.
Effective viscosity reads

5 :
perr = p(1 + 5¢p) inO
One recovers Einstein's formula for p = 1p.

Remark : The assumption that d, > cn~!/3 is stringent compared
to the no-penetration condition, that reads

dy > 2r, = ' ¢t/3p~1/3



Theorem ([G-V and Héfer], see also [Duerinckx and Gloria])

Einstein's formula is still valid if (A2) is relaxed into a set of two
conditions.
30 >0, 6,>(24+0)m (A2)

3C,a>0,s.t. Vn, #{i,|x —x| <nn~3} < Cpon. (A2")

Remark :
(A2') could be even more relaxed.

(A2") satisfied by i.i.d. random variables, points drawn from
classical stationary ergodic processes...
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Second order approximation

Can we go beyond Einstein's formula ? o(¢?) approximation ?

Various formula in the literature, for periodic and random

stationary distributions of particles:
. But ...

- Formulas do not always coincide !

- Some methods of derivation require mathematical clarity (like the

renormalization technique of Batchelor and Green)
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Second order approximation

Can we go beyond Einstein's formula ? o(¢?) approximation ?

Various formula in the literature, for periodic and random
stationary distributions of particles:
. But ...

- Formulas do not always coincide !

- Some methods of derivation require mathematical clarity (like the

renormalization technique of Batchelor and Green)
Difficulties:
- Pairwise interactions must be taken into account.

- Microscopic structure plays a role: knowing p is not enough.
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Mix of deterministic and probabilistic approaches.

Tools :

- Method of reflections

- Theory of Coulomb gases

- Stochastic homogenization

- Cluster expansions

Remark : two extreme types of diluteness (remind ¢ = *Znr?)
- play on the inter-particle distance. Example : periodic.

- play with thinning. No constraint on the minimal distance
(except non-penetration condition). Example : point processes of
Poisson type.

12



Suspensions with strong inter-particle distance

Main assumptions : (Al1)-(A2)

Important object:
The 4-tensor field M(x) = D(VU), with U the Oseen 2-tensor.

For all x, M(x) € Sym(Sym(RR?)), with
3 ®x:S
(x X x)

8r HE

M(x)S = —

Mean field functionals : for any smooth ¢,

Whli) = 22 (25 3 MO = x)el)ol)

13



Theorem [GV-Hillairet], [GV-Mecherbet]
Assume (A1)-(A2). Let
p2 = p2(x) € L(R?), Sym(Symy(R?))).

Let prefr = o+ 31upd + pag?. Then,

lim sup HUn - UeffHLp - O(¢7/3)7 Vp < 3.
if and only if for all smooth ¢,

i Waliel = | | na()lel) P (MF)

n—-+o00

Remark : W,[¢] / 0 as n — 400 ! Due to the singularity of M.
M is a Calderon-Zygmund operator, which is crucial to us.

Remark : The convergence (MF) of the mean-field functional is
necessary and sufficient to have a O(¢?) effective model.
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Quick ideas from the proof:

1. Duality argument : it is enough to show that

Vg>3, 3C>0, ‘/ VoF
R3

< C¢7/3HVHWL‘7» Vv € DU(R3)a

where v, = v,[v] is the solution of

5
—ulv, + Vg, = 2div (§p¢+u2¢2) in R3\ UB;
div ¢, =0 in R3\ UB;,
Va=Vv+vitw X(x—x;) in B V1I<i<n.

+ consistent force and torque conditions.

ii5)



2. Method of reflections to build an approximation of v,.

Vn,app = Vsource + Vn,bc

- Vsource = U x div (%P¢ + M2¢2)
- Vnbe = 91 Vsingle,ilAi]
where Vjjngle i solves a one-sphere Stokes problem:
_Avsingle,i + VP = 07 div Vsingle,i =0 in R3 \ Bi>
Vsingle,i = Ai(X - Xi) in B;.
Matrices A; are obtained in the form of an expansion, adding at
each step a superposition of one-sphere solutions.
Last : - control v, — vp app Strongly in H!

- control [ v, app f through a duality argument.
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Connection to theory of Coulomb gases

How to show that convergence (MF) holds and how to
compute the limit pp ?

Inspiration taken from the lecture notes of Sylvia Serfaty.

Example: homogeneous setting : p = 1n. We restrict to

Wolt] = 2 (25 S MOs=x) = [ Mlx=y)plx)oly)dcy)

Y R3xR3
i#) .

1. We prove that for S € Sym(R?), with gs(x) := 257“/\/1(X)5 . S,
Whil[1]S: S

- / 8L )pa(8) ~ pLIBNn() — p(1)a) + 1)
Xy

=V
17



2. To understand V/,,, we express it as an energy.

Proposition
For all f € L?(R3),

/R3 Ra}é’s(x—y)f(X)f(y)dy:25/]R3 D(ur) 2

where  — Aus + Vpr =div (5f), divur=0 in R3

Idea : replace f by p, — p to find

/ g5 (x—y)(3n(dx)—p(x)dx)(0n(dy)—p(y)dx) = 25 | |D(hn)[*"
R3xR3 JR3

with h, = u,,—,

18



/ 85 (x—=y)(0n(dx)—p(x)dx)(dn(dy)—p(y)dx) = 25 | [D(hn)]
R3XxR3 R3

Problem: both terms are infinite !

- the left-hand side is infinite because of the diagonal (which was
excluded in the definition of V).

- the right-hand side is infinite because p, — p is not in H™L.

But there is a way to make sense of this equality and use it,
through regularization and renormalization : see [Serfaty'14].

2n
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/ gs(x—y)(6n(dx)—p(x)dx)(Sx(dy)—p(y)dx) = 25 [ |D(hn)[*"
R3xR3 JR3
Problem: both terms are infinite !

- the left-hand side is infinite because of the diagonal (which was
excluded in the definition of V).

- the right-hand side is infinite because p, — p is not in H™L.

But there is a way to make sense of this equality and use it,
through regularization and renormalization : see [Serfaty'14].

At the end of the day : one needs for a fixed value of a

regularization parameter 7, to understand the limit in n of
Jrs |D(h1)|?, with

— AR+ Vp! = div (5(pz . p)), div A1 =0
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More precisely,

— AR+ Vp! = div (Z G 3 (x — x;)) — Sp)

i=1

with " compactly supported.

20



More precisely,
— AW+ Vpl = div (Z (3 (x — x;)) — Sp)
i=1
with " compactly supported.
Idea : Evokes the following baby model :
—Ah* 4+ Vp® =div (F(x/e)), divh =0 (1)

with F = F(y) Z3-periodic in y, with zero average.

In this analogy:

- F(x/) corresponds to >.7_, 4"(n*/3(x — x;)) — Sp.

- It oscillates at typical scale ¢ = n~1/3.

20



Bottom line : Possible to understand the limit of the energy, and

eventually compute po, in classical homogenization settings.

Example 1 : Cubic lattice.

Theorem
If the x; are distributed according to a cubic lattice:

S : S = ,u(az 1S3 + 52 |5,-j|2)7 o= 948, B~ —2.5.
i i7#j

Example 2 : Stationary ergodic point process. Given a small ¢:

- We start from a point process with intensity ¢, {yx} = {yx(w)}

satisfying |yx — yw| > c¢~ /3 a. s. for some fixed ¢ > 0.

- We introduce a small parameter 0 < ¢ < 1.

- We set {x1,...,xn} ={eyx} N O.
21



Remark : n is now random.

By the ergodic theorem, goes to infinity almost surely as ¢ — 0,
with n ~ ¢e73.

The resulting set {xi,...,x,} satisfies (A2) almost surely.

Theorem
25 1 f
po=Sntim [ M(x = galey)ddy
B, x Bn

2 non
with B, the ball of volume n and g»(x,y) = g(x — y) the
two-point correlation function of the process (y).
If furthermore the point process is isotropic and if g — 1 fast
enough,

_3
p2 = -

22



Remark: for [x — y| — oo :

- g2(x,y) ~ 1
- M(x — y) scales like ﬁ (borderline integrable)

Not obvious to show that the limit exists.

[Batchelor-Green'1972] : solve the problem by the so-called

renormalization technique.

They add artificially in the expression for po an expression which
has zero expectation, and exhibits the same kind of divergence.

Actually not needed ! As M is of Calderon-Zygmund type, it

vanishes on spheres, and this is enough to circumvent the problem.
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Suspensions dilute through thinning

Same stochastic model as before, but:
- we relax the assumption (A2) into (A2’)

- we assume boundedness and decorrelation properties at large
distances of k-point correlation functions g, 0 < k < 5.
(consistent with Poisson type processes).

Exemple: g»(x,y) =1+ R(x—y), R € LINL>® for some q

Theorem

25 1

lim — (x — y)g2(x, y)dxdy

2 p—
K 2 K n—+toon [p g

with NV (x) explicit in terms of solutions of two-sphere Stokes
problems, and behaving like M at infinity.

24



Vague idea of the proof :
Relies from the start on stochastic homogenization.

We use the expression of effective viscosity given by
homogenization.

We show that it can be rewritten as
perftS 1 S =E lim £,[u3]
n

where £, is a linear functional, and u? satisfies the same system
as before, replacing the source term with inhomogeneous b.c.

ufsz—Fu;—i—w;x(x—x,-) on B;.

To compute the O(¢?) term in peg, we use a cluster expansion
of u2. Substitute to the method of reflections.

25



Idea [Felderhof'82] : for any function f = f(/) defined on finite

subsets of N, we can always decompose

f(1)=2 g(J), with g(1):=) (-1)¥"Hf(y)  (CE)

Jci Jci

Expansion (CE) allows to distinguish in the value of f the
contribution of subsets of one element, two elements, ...

Here : we take f(/) = uf, with / C {1,...,n} and u? the Stokes
solution outside the balls with centers whose indices are in /.

S S S S
up = g+ Y ufy Y uf
k k1

The k-th term in the expansion provides the ¢* term in the
effective viscosity.
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