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Context

Starting point :

Suspension of n� 1 small solid spheres in a viscous flow.

- The solid particles induce resistance to strain.

- Can it be seen at a macroscopic scale as an extra viscosity ?

Hope :

- Averaging to take place as n→∞

- Suspension to be described by a single fluid model with some

effective viscosity.

Topic of great interest in rheology.

Many experiments (lab or computer) with sheared suspensions.
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Measurement of the effective viscosity (assuming it exists !) :

µeff ,exp =
energy dissipation of the suspension

energy dissipation of the fluid alone

Crucial parameter : solid volume fraction φ.

- φ small : dilute suspensions.

- φ ∼ φc , maximal flowable volume fraction : dense suspensions.

[Guazzelli-Pouliquen’18]
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Suggests a universal behaviour : µeff = µeff (φ/φc).

But far from understood, notably at large φ :

- Contact between particles plays a role

- Confinement plays a role as well.

- Non-newtonian behaviour.

Even in idealized models, difficult mathematical questions, related

to percolation/graph theory :

- see [Berlyand et al’05] for finite n.

- Ongoing PhD thesis of Alexandre Girodroux-Lavigne.
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Mathematical analysis of dilute suspensions

A simple model, with pure hydrodynamic interactions:

- n spherical particles Bi = B(xi , rn).

- Stokes flow in Ωn = R3 − ∪n
i=1Bi :

−µ∆un +∇pn = f , div un = 0 in Ωn

with f in Lp(R3) for p large enough.

- Particles are neutrally buoyant (no sedimentation).

No inertia, no thermal fluctuation.

Force- and torque-free. For all i ,∫
∂Bi

σµ(un, pn)ν ds =

∫
∂Bi

σµ(un, pn)ν × (x − xi ) ds = 0
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- Particles are rigid, with no-slip at the boundary: for all i

un|∂Bi
= ui + ωi × (x − xi ), ui , ωi ∈ R3.

- Decay of un at infinity.

Remark : Snapshot at a given time t.

In fact : xi = xi (t), ui = ui (t), ẋi = ui .

Assumptions made on (xi )1≤i≤n preserved through time ?

This question is left aside here.
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Can we approximate it by an effective fluid equation ?

−div (2µeff D(ueff )) +∇peff =(1− φ)f , div ueff = 0 in R3

with µeff = µeff (x), µeff 6= µ in the region O of the particles.

We focus on the dilute regime. With |O| = 1, we assume that

φ =
4π

3
nr3n is small but independent of n

Two subquestions :

Q1 : Exact effective viscosity ?

lim
n

un = ueff for some µeff ?

See [Duerinckx-Gloria’20], [Duerinckx’20], [Jikov et al’1994].
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Q2 : Approximate effective viscosity of order k ?

lim sup
n
‖un − ueff ‖Lp = o(φk ) for some µeff , for some p ?

In this regime, the hope is to find µeff under the form

µeff = µ+ φµ1 + · · ·+ φkµk

where µi ∈ Sym(Sym0(R3))

Q2 may require less assumptions than Q1

on the xi ’s (e.g. for the derivation of

Einstein’s formula).

Useful as there is no canonical stationary

measure.
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First order approximation

[Einstein 1905] : If the suspension is homogeneously distributed in

a (smooth bounded) domain O, and if the interaction between the

particles can be neglected, then a first order approx. is given by

µeff = µ(1 +
5

2
φ) inO

Mathematical justification ?

- [Sanchez Palencia, Levy et al, Haines et al]: xi on a periodic grid.

- [Niethammer and Schubert, Hillairet and Wu]: under

ρn :=
1

n

n∑
i=1

δxi ⇀ ρ(x)dx , ρ bounded, suppρ = O. (A1)

dn ≥ cn−1/3, dn = inf
i 6=j
|xi − xj |, c independent of φ (A2)
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Remark : (A1) includes the case of inhomogeneous distributions.

Effective viscosity reads

µeff = µ(1 +
5

2
φρ) inO

One recovers Einstein’s formula for ρ = 1O.

Remark : The assumption that dn ≥ cn−1/3 is stringent compared

to the no-penetration condition, that reads

dn ≥ 2rn = c ′φ1/3n−1/3
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Theorem ([G-V and Höfer], see also [Duerinckx and Gloria])

Einstein’s formula is still valid if (A2) is relaxed into a set of two

conditions.

∃δ > 0, δn ≥ (2 + δ)rn (A2’)

∃C , α > 0, s.t. ∀η, ]{i , |xi − xj | ≤ ηn−1/3} ≤ Cηαn. (A2”)

Remark :

(A2’) could be even more relaxed.

(A2”) satisfied by i.i.d. random variables, points drawn from

classical stationary ergodic processes...
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Second order approximation

Can we go beyond Einstein’s formula ? o(φ2) approximation ?

Various formula in the literature, for periodic and random

stationary distributions of particles: Nunan et al, O’Brien, Zuzovski et

al, Ammari et al, Batchelor and Green, Hinch.... But ...

- Formulas do not always coincide !

- Some methods of derivation require mathematical clarity (like the

renormalization technique of Batchelor and Green)

Difficulties:

- Pairwise interactions must be taken into account.

- Microscopic structure plays a role: knowing ρ is not enough.
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Mix of deterministic and probabilistic approaches.

Tools :

- Method of reflections

- Theory of Coulomb gases

- Stochastic homogenization

- Cluster expansions

Remark : two extreme types of diluteness (remind φ = 4π
3 nr3n )

- play on the inter-particle distance. Example : periodic.

- play with thinning. No constraint on the minimal distance

(except non-penetration condition). Example : point processes of

Poisson type.
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Suspensions with strong inter-particle distance

Main assumptions : (A1)-(A2)

Important object:

The 4-tensor field M(x) = D(∇U), with U the Oseen 2-tensor.

For all x , M(x) ∈ Sym(Sym0(R3)), with

M(x)S = − 3

8π
D
(x ⊗ x : S

|x |5
x
)

Mean field functionals : for any smooth ϕ,

Wn[ϕ] :=
25µ

2

( 1

n2

∑
i 6=j

M(xi − xj )ϕ(xi )ϕ(xj )

−
∫
R3×R3

M(x − y)ϕ(x)ϕ(y)ρ(x)ρ(y)dxdy
)
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Theorem [GV-Hillairet], [GV-Mecherbet]

Assume (A1)-(A2). Let

µ2 = µ2(x) ∈ L∞
(
R3), Sym(Sym0(R3))

)
.

Let µeff = µ+ 5
2µρφ+ µ2φ

2. Then,

lim sup
n
‖un − ueff ‖Lp = O(φ7/3), ∀p ≤ 3.

if and only if for all smooth ϕ,

lim
n→+∞

Wn[ϕ] =

∫
R3

µ2(x)|ϕ(x)|2dx (MF)

Remark : Wn[ϕ] 6→ 0 as n→ +∞ ! Due to the singularity of M.

M is a Calderon-Zygmund operator, which is crucial to us.

Remark : The convergence (MF) of the mean-field functional is

necessary and sufficient to have a O(φ2) effective model.
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Quick ideas from the proof:

1. Duality argument : it is enough to show that

∀q ≥ 3, ∃C > 0,
∣∣∣ ∫

R3

vnf
∣∣∣ ≤ C φ7/3‖v‖W 1,q , ∀v ∈ Dσ(R3),

where vn = vn[v ] is the solution of

−µ∆vn +∇qn = 2div
(5

2
ρφ+ µ2φ

2
)

in R3 \ ∪Bi

div φn = 0 in R3 \ ∪Bi ,

vn = v + vi + ωi × (x − xi ) in Bi , ∀1 ≤ i ≤ n.

+ consistent force and torque conditions.
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2. Method of reflections to build an approximation of vn.

vn,app = vsource + vn,bc

- vsource = U ? div
(
5
2ρφ+ µ2φ

2
)

- vn,bc =
∑n

i=1 Vsingle,i [Ai ]

where Vsingle,i solves a one-sphere Stokes problem:

−∆Vsingle,i +∇Pi = 0, div Vsingle,i = 0 in R3 \ Bi ,

Vsingle,i = Ai (x − xi ) in Bi .

Matrices Ai are obtained in the form of an expansion, adding at

each step a superposition of one-sphere solutions.

Last : - control vn − vn,app strongly in Ḣ1

- control
∫
vn,app f through a duality argument.

16



Connection to theory of Coulomb gases

How to show that convergence (MF) holds and how to

compute the limit µ2 ?

Inspiration taken from the lecture notes of Sylvia Serfaty.

Example: homogeneous setting : ρ = 1O. We restrict to

Wn[1] =
25µ

2

( 1

n2

∑
i 6=j

M(xi−xj )−
∫
R3×R3

M(x−y)ρ(x)ρ(y)dxdy
)

1. We prove that for S ∈ Sym0(R3), with gs(x) := 25µ
2 M(x)S : S ,

Wn[1]S : S

=

∫
x 6=y

gS (x − y)(ρn(dx)− ρ(x)dx))(ρn(dy)− ρ(y)dy)︸ ︷︷ ︸
:=Vn

+ on(1).
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2. To understand Vn, we express it as an energy.

Proposition

For all f ∈ L2(R3),∫
R3×R3

gS (x − y)f (x)f (y)dy = 25

∫
R3

|D(uf )|2

where −∆uf +∇pf = div (Sf ), div uf = 0 in R3

Idea : replace f by ρn − ρ to find

”

∫
R3×R3

gS (x−y)(δn(dx)−ρ(x)dx)(δn(dy)−ρ(y)dx) = 25

∫
R3

|D(hn)|2”

with hn = uρn−ρ
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”

∫
R3×R3

gS (x−y)(δn(dx)−ρ(x)dx)(δn(dy)−ρ(y)dx) = 25

∫
R3

|D(hn)|2”

Problem: both terms are infinite !

- the left-hand side is infinite because of the diagonal (which was

excluded in the definition of Vn).

- the right-hand side is infinite because ρn − ρ is not in H−1.

But there is a way to make sense of this equality and use it,

through regularization and renormalization : see [Serfaty’14].

At the end of the day : one needs for a fixed value of a

regularization parameter η, to understand the limit in n of∫
R3 |D(hηn)|2, with

−∆hηn +∇pηn = div
(
S(ρηn − ρ)

)
, div hηn = 0
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More precisely,

−∆hηn +∇pηn = div
( n∑

i=1

ψη(n1/3(x − xi ))− Sρ
)

with ψη compactly supported.

Idea : Evokes the following baby model :

−∆hε +∇pε = div
(
F (x/ε)

)
, div hε = 0 (1)

with F = F (y) Z3-periodic in y , with zero average.

In this analogy:

- F (x/ε) corresponds to
∑n

i=1 ψ
η(n1/3(x − xi ))− Sρ.

- It oscillates at typical scale ε = n−1/3.
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Bottom line : Possible to understand the limit of the energy, and

eventually compute µ2, in classical homogenization settings.

Example 1 : Cubic lattice.

Theorem

If the xi are distributed according to a cubic lattice:

µ2S : S = µ(α
∑

i

|Sii |2 + β
∑
i 6=j

|Sij |2
)
, α ≈ 9.48, β ≈ −2.5.

Example 2 : Stationary ergodic point process. Given a small φ:

- We start from a point process with intensity φ, {yk} = {yk (ω)}
satisfying |yk − yk ′ | ≥ cφ−1/3 a. s. for some fixed c > 0.

- We introduce a small parameter 0 < ε� 1.

- We set {x1, . . . , xn} = {εyk} ∩ O.
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Remark : n is now random.

By the ergodic theorem, goes to infinity almost surely as ε→ 0,

with n ∼ φε−3.

The resulting set {x1, . . . , xn} satisfies (A2) almost surely.

Theorem

µ2 =
25

2
µ lim

n

1

n

∫
Bn×Bn

M(x − y)g2(x , y)dxdy

with Bn the ball of volume n and g2(x , y) = g(x − y) the

two-point correlation function of the process (yk ).

If furthermore the point process is isotropic and if g → 1 fast

enough,

µ2 =
5

2
µ.
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Remark: for |x − y | → ∞ :

- g2(x , y) ∼ 1

- M(x − y) scales like 1
|x−y |3 (borderline integrable)

Not obvious to show that the limit exists.

[Batchelor-Green’1972] : solve the problem by the so-called

renormalization technique.

They add artificially in the expression for µ2 an expression which

has zero expectation, and exhibits the same kind of divergence.

Actually not needed ! As M is of Calderon-Zygmund type, it

vanishes on spheres, and this is enough to circumvent the problem.
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Suspensions dilute through thinning

Same stochastic model as before, but:

- we relax the assumption (A2) into (A2’)

- we assume boundedness and decorrelation properties at large

distances of k-point correlation functions gk , 0 ≤ k ≤ 5.

(consistent with Poisson type processes).

Exemple: g2(x , y) = 1 + R(x − y), R ∈ Lq ∩ L∞ for some q

Theorem

µ2 =
25

2
µ lim

n→+∞

1

n

∫
Bn×Bn

N (x − y)g2(x , y)dxdy

with N (x) explicit in terms of solutions of two-sphere Stokes

problems, and behaving like M at infinity.
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Vague idea of the proof :

Relies from the start on stochastic homogenization.

We use the expression of effective viscosity given by

homogenization.

We show that it can be rewritten as

µeff S : S = E lim
n
Ln[uS

n ]

where Ln is a linear functional, and uS
n satisfies the same system

as before, replacing the source term with inhomogeneous b.c.

uS
n = Sx + ui + ωi × (x − xi ) on Bi .

To compute the O(φ2) term in µeff , we use a cluster expansion

of uS
n . Substitute to the method of reflections.
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Idea [Felderhof’82] : for any function f = f (I ) defined on finite

subsets of N, we can always decompose

f (I ) =
∑
J⊂I

g(J), with g(I ) :=
∑
J⊂I

(−1)]I−]J f (J) (CE)

Expansion (CE) allows to distinguish in the value of f the

contribution of subsets of one element, two elements, . . .

Here : we take f (I ) = us
I , with I ⊂ {1, . . . , n} and uS

I the Stokes

solution outside the balls with centers whose indices are in I .

uS
I = uS

∅ +
∑

k

uS
{k} +

∑
k 6=l

uS
{k,l}

The k-th term in the expansion provides the φk term in the

effective viscosity.
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