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Part I

Falling clouds
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Dispersion of Sphagnum Moss Spores Bioconvection
Whitaker & Edwards Science 2010 Jánosi, Kessler & Horváth PRE 1998
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The general purpose of this paper is to investigate some consequences of the random-
ness of the velocities of interacting rigid particles falling under gravity through viscous
fluid at small Reynolds number. Random velocities often imply di↵usive transport
of the particles, but particle di↵usion of the conventional kind exists only when the
length characteristic of the di↵usion process is small compared with the distance
over which the particle concentration is e↵ectively uniform. When this condition
is not satisfied, some alternative analytical description of the dispersion process is
needed. Here we suppose that a dilute dispersion of sedimenting particles is bounded
externally by pure fluid and enquire about the rate at which particles make outward
random crossings of the (imaginary) boundary. If the particles are initially distributed
with uniform concentration within a spherical boundary, we gain the convenience
of approximately steady conditions with a velocity distribution like that in a falling
spherical drop of pure liquid. However, randomness of the particle velocities causes
some particles to make an outward crossing of the spherical boundary and to be
carried round the boundary and thence downstream in a vertical ‘tail’. This is the
nature of break-up of a falling cloud of particles.

A numerical simulation of the motion of a number of interacting particles (max-
imum 320) assumed to act as Stokeslets confirms the validity of the above picture
of the way in which particles leak away from a spherical cluster of particles. A
dimensionally correct empirical relation for the rate at which particles are lost from
the cluster involves a constant which is indeed found to depend only weakly on the
various parameters occurring in the numerical simulation. According to this relation
the rate at which particles are lost from the blob is proportional to the fall speed of
an isolated particle and to the area of the blob boundary. Some photographs of a
leaking tail of particles in figure 5 also provide support for the qualitative picture.

1. Introduction
It is a feature of flowing dispersions of particles suspended in viscous fluid (normally

a liquid) that the particles make random displacements arising from hydrodynamic
interactions with their neighbours, and that these displacements generate stochastic
particle trajectories. This process of hydrodynamic dispersion has an origin entirely
distinct from that of the Brownian di↵usion of very small particles (which respond
dynamically to collisions with molecules of the surrounding solvent), and it occurs

162 J. M. Nitsche and G. K. Batchelor

with comparatively large particles for which Brownian agitation may be negligible as
a force causing transport. The investigation of hydrodynamic dispersion of interacting
spherical particles normal to the streamlines of an annular Couette flow by Eckstein,
Bailey & Shapiro (1977) appears to have been the first in an essentially new field. Since
then considerable experimental and theoretical work has addressed hydrodynamic
di↵usion of particles undergoing bulk shear flow or sedimentation. (See Davis 1996
for a report on the developments presented at an international symposium in 1995.)

Many of these studies have been restricted to dispersions in which the particle
concentration is uniform or is a slowly varying function of position. In these
circumstances it may be possible to define a hydrodynamic di↵usivity of the particles
as the particle flux divided by the concentration gradient. In some other cases,
however, there is a jump in the value of the particle concentration across an interface.
In these circumstances a di↵usivity defined as the ratio of the particle flux to the
concentration gradient does not have physical meaning. Transfer of particles due to
velocity fluctuations still occurs, but is not describable in terms of a di↵usivity, just as
one would not expect the continuum equations for di↵usion of a gas to be applicable
when – as in the interior of a shock wave for instance – the characteristic length scale
of the di↵usive process is not small compared with distances over which the particle
concentration is e↵ectively uniform.

We shall present a numerical investigation of hydrodynamic dispersion in a system
containing an interface which separates a random dispersion of prescribed particle
concentration on one side from clear fluid on the other side. Specifically, we consider
the motion under gravity of particles within a blob (a convenient term for a finite
volume of a dispersion of particles in liquid) comprising a large number N of
particles initially distributed randomly in liquid with uniform mean concentration
within a prescribed closed surface, and inquire as to its subsequent time evolution.
The particles will tend to spread out from each other, and questions of interest are
therefore: do particles leave the blob, and if so how, and what is the lifetime of the
blob as a cohesive entity? A spherical blob shape is especially well suited to a study
of random particle migration across interfaces because the gravity-driven flow system
maintains essentially constant form. Thus, the migration process can be observed
without the complication of significant deformation of the blob as a whole. As noted
above, it is not possible to specify the flux of particles across such an interface in
terms of a particle di↵usivity of the conventional kind. Some alternative analytical
description of the dispersion process at the interface is required.

Insofar as the blob can be regarded as an e↵ective continuum having a density
higher than that of the surrounding clear fluid, the flow system under consideration
is closely related to the fall of a drop of heavy fluid through an infinite expanse of
lighter fluid, for which the velocity field is given – in the case of a spherical blob –
by well-known formulae (Batchelor 1967) attributed to Hadamard and Rybczyński
(designated here as H-R). A spherical blob containing particles possesses the addi-
tional physical feature that the suspended particles, which contribute excess mass to
the blob, fall relative to the fluid in which they are immersed. A generalization of the
H-R solution appropriate to this circumstance has been given in another context by
Batchelor (1974), who found that a low-Reynolds-number spherical sedimenting drop
may carry with it a circulating ‘halo’ of clear fluid, and that the compound structure
as a whole may fall without change of form.

The sequence of problems considered may thus be described as follows: (i) the H-R
solution refers to a spherical drop of viscous fluid falling through a second viscous
fluid of smaller density; (ii) the Batchelor (1974) solution refers to a spherical drop
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Sedimentation of particles



7/85

1, 2, 3 . . . spheres A cloud of spheres A cloud of fibers Beyond Stokes And beyond . . .

1 1, 2, 3 . . . spheres

2 A cloud of spheres
Stability of the cloud
Influence of initial shape on subsequent evolution
Leakage and breakup

3 And also a cloud of fibers

4 Beyond Stokes: A cloud at finite Reynolds number
Spheres at finite inertia
The regimes of evolution for a falling cloud
Instability and breakup

5 And beyond . . .
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Sedimentation of a single sphere for Rep = aUS/ν � 1

Force balance: Fe + Fh = 0

4

3
πa3(ρp − ρ)g − 6πµaU = 0

Stokes velocity
US = 2(ρp − ρf )a2g/9µ

Slow-decay disturbance ∼ O( aUS
r

)

Stokes 1851
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Sedimentation of a pair of identical spheres

Udoublet

US

= 1 +
3a

2r
for θ = 0,

Udoublet

US

= 1 +
3a

4r
for θ =

π

2

Two identical spheres fall at the same
velocity and therefore do not change their
orientation and separation

Method of reflection: Smoluchowski Bull. Acad. Sci. Cracovie 1911
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Sedimentation of a triplet
The three-body problem!

The particles do not maintain
constant separation: the middle
particle B falls faster
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Stokeslet simulation of a triplet

case (a): particles positioned at the
vertices of an horizontal isosceles
triangle

case (b): random initial configuration

case (c): random initial configuration
differing from (b) by only an

O(10−3) perturbation in the
horizontal coordinates of one particle

Sensitivity to initial configurations: signature of chaotic behavior originating in the
long-range and many-body character of the hydrodynamic interactions
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Spherical cloud of N spheres

Balance between gravitational and drag forces

N
4

3
πa3(ρp − ρ)g − 2πµ

2 + 3µs
µ

µs
µ

+ 1
R V = 0

Drag force of a drop

Fh = −2πµ
2 + 3µs

µ
µs
µ

+ 1
R V

Hadamard C. R. Acad. Sci. Paris 1911

Rybczyński Bull. Acad. Sci. Cracovie 1911

Settling velocity

V =
N 4

3
πa3(ρp − ρ)g

2πµ
2+3µs

µ
µs
µ

+1
R

≈
N 4

3
πa3(ρp − ρ)g

5πµR

Continuous spherical distribution of excess mass
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Sedimentation of particles



15/85

1, 2, 3 . . . spheres A cloud of spheres A cloud of fibers Beyond Stokes And beyond . . .

Flow field inside a falling drop
in the drop reference frame

from Batchelor An Introduction to Fluid Dynamics CUP 1967
after Spells Proc. Phys. Soc. 1952
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Toroidal circulation
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Stability of the cloud

Stability of the cloud?

“A spherical blob shape is especially well suited to a study of
random particle migration across interface because the
gravity-driven flow maintains essentially constant form”
Nitsche & Batchelor JFM 1997

“An initially spherical blob does not substantially change
its shape when falling”
Machu, Meile, Nitsche & Schaflinger JFM 2000

“In the case of low Reynolds numbers, the suspension drop
retains a roughly spherical shape while settling”
Bosse, Kleiser, Härtel & Meiburg PoF 2005
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Stability of the cloud

But the cloud is unstable!

288 B. Metzger, M. Nicolas and É. Guazzelli

Number a φ R0 V0 N0 N0 ts
Set of runs (µm) (%) (mm) (mm s−1) from φ from V0 (s) Re

A 4 154 ± 10 4.0 ± 0.5 3.7 ± 0.1 1.7 ± 0.1 574 ± 95 518 ± 67 2.2 5×10−3

B 4 154 ± 10 20 ± 3 3.3 ± 0.1 5.9 ± 0.1 2070 ± 574 1600 ± 279 0.6 1×10−2

C 2 67 ± 10 20 ± 3 1.3 ± 0.1 0.7 ± 0.1 1450 ± 390 952 ± 257 1.8 7×10−4

Table 1. Experimental conditions.

(b)

3 mm

(a)

Figure 2. Snapshots of the falling cloud: (a) point-particle simulation with N0 = 3000 and
(b) experiment using the glass beads of set C in silicon oil.

water. This mixture had a density ρ = 1.030 ± 0.010 g cm−3 and a dynamic viscosity
µ =1170 ± 20 cP. We employed two different batches of spherical glass beads of
density ρp = 2.450 ± 0.050 g cm−3 having different radii (table 1). A few qualitative
visualization experiments were also performed in Silicon oil 47V1000 (1000 times
more viscous than water) with the spherical glass beads used in set C (see figure 2)
and with another batch of glass beads having a radius of 400 ± 50 µm (see movie 1,
available with the online version of the paper).

The initial number of particles N0 was estimated by two means: (i) from the known
volume fraction φ and the measured cloud radius R0 by using N0 = φ(R0/a)3 and (ii)
from the measured cloud initial velocity V0 and radius R0 by using N0 = 5πµR0V0/F
with F =4πa3(ρp − ρ)g/3. Note that the last formula comes from the equation for
the velocity of a spherical cloud of point particles (see § 2). The discrepancies between
the two calculations (see table 1) are mainly caused by the influence of the cell walls
and by the additional dissipation caused by the finite size of the particles which

Metzger, Nicolas & Guazzelli JFM 2007
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Stability of the cloud

Point-force model: The Stokeslet

Minimal description: only far-field and strictly Re = 0

ṙi = US +
Fe

8πµ
·
∑
j 6=i

(
I

|r∗ij|
+

rijrij

|r∗ij|3

)
with rij ≡ ri − rj
Dimensionless equations (length-scale = R0 and velocity-scale
= V0 = N0F

5πµR0
of the initially spherical cloud)

ṙ∗i =
5R0

6N0a
· eg +

5

8N0

∑
j 6=i

(
I

|r∗ij|
+

rijrij

|r∗ij|3

)
· eg

Ekiel-Jeżewska, Metzger & Guazzelli PoF 2006
Metzger, Nicolas & Guazzelli JFM 2007
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Stability of the cloud

Evolution of the cloud
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Stability of the cloud

Break-up probability and time
290 B. Metzger, M. Nicolas and É. Guazzelli
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Figure 3. (a) Destabilization probability nb/nt and (b) destabilization time t∗
b , measured for

the different simulation runs (filled diamonds) and for the two individual experimental runs of
set C (circle), versus N0.

bend to break up into secondary droplets. The dimensionless destabilization time t∗
d is

plotted versus N0 for all runs in figure 3. Although the probability of destabilization
increases with N0, the dimensionless time required for destabilization increases with
N0. It seems that there is a lower bound above which the cloud eventually destabilizes.
A less complete study was performed experimentally as the experiments are delicate
and tedious and it is difficult to obtain large statistics. However, destabilization times
obtained for the two individual runs of set C are of the same order of magnitude as
those predicted by the simulations.

5. First evolution toward a torus
As a general trend, the cloud evolves toward a torus. This is well represented by

the growth of the horizontal radius with time. Figure 4(a) shows the growth with
time of R∗ for four individual experimental runs and of the corresponding average
quantity over several numerical runs (see tables 1 and 2). For a small initial number
of particles (N0 = 500 in the simulations and N0 ≈ 500 in the experiments, i.e. set A
with φ = 4%), there is a considerable variation among runs, but the increase of the
radius is comparable in experiments and simulations. Conversely, for a larger number
of particles (N0 = 2000 in the simulations and N0 ≈ 2000 in the experiments, i.e. set
B with φ = 20%), the fluctuations are smaller and the experimental data present a
stronger increase than the simulations. This discrepancy occurs for an experimental
large volume fraction, a quantity meaningless in the point-particle simulations which
hold in the dilute regime. It should be noted that the observed oscillations in the
growth are related to the toroidal circulations of the particles. This feature is less
obvious in the simulation data as averaging has been performed over several runs.
The evolution toward a torus also induces a decrease of the cloud velocity with time
as the cloud loses particles and flattens. Figure 4(b) shows the decrease with time of
V ∗ for the same four experimental runs and of the corresponding average quantity
over the same numerical runs. Again the variations among runs are large, but there
is a qualitative agreement between experiments and simulations.

Sole dependance on N0

Élisabeth Guazzelli Université de Paris, CNRS
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Influence of initial shape on subsequent evolution

Successive numerical-cloud profiles
Positions of the point particles integrated over the azimuthal angle

∗

At long times, the cloud always reduces to a torus
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Influence of initial shape on subsequent evolution

Successive experimental-cloud profiles
Photographs of the clouds: (a) nearly spherical and (b) prolate initial shapes

296 B. Metzger, M. Nicolas and É. Guazzelli

(a)

(b)

8 16 24 60

3.5 mm

t* = 0

Figure 11. Photographs of the clouds for the same experimental runs as those of figure 9(b):
(a) nearly spherical and (b) prolate shapes.
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Figure 12. Flow and pressure fields computed at successive times in the vertical plane through
the vertical axis of symmetry and in the instantaneous reference frame of the cloud. The
displayed particles are those located at ±0.1R0 from the vertical plane. High (low) pressure is
indicated in dark (white).

At long times, a torus is also recovered in the experiments

Élisabeth Guazzelli Université de Paris, CNRS
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Influence of initial shape on subsequent evolution

Evolution of the horizontal-to-vertical aspect ratio γ
Different initial shapes: (a) numerical simulations and (b) experiments

294 B. Metzger, M. Nicolas and É. Guazzelli
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Figure 8. (a) Average distance D∗ measuring the departure from the Hadamard–Rybczyński
toroidal closed streamlines versus time t∗, and (b) departure rate dD∗/dt∗ versus N0.
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Figure 9. Evolution of the aspect ratio of individual clouds starting from different initial
shapes obtained from (a) numerical simulations with N0 = 3000, and (b) experiments using
particles of set C at a volume fraction of 10 ± 3%. !, spherical; ", oblate; # prolate.

about the decrease of the rate of leakage with increasing N0. In logarithmic scales, the
data are well fitted by a straight line of slope −0.34 ± 0.02, suggesting that dD∗/dt∗

scales as N
−1/3
0 .

7. Influence of initial shape on subsequent evolution
As mentioned in § 3, it is difficult to produce a perfectly spherical cloud in

experiments. In general, the injected cloud is slightly deformed. The objective of
this section is to investigate the influence of initial shape on the subsequent evolution
of the cloud. Figure 9 shows the time evolution of the horizontal-to-vertical aspect
ratio γ = R/r for individual experimental and numerical runs with N0 = 3000 and
starting from spherical, oblate and prolate shapes (oblate shapes were not successfully
produced in the experiment, § 3). After t∗ ≈ 10, the oblate (prolate) perturbation
relaxes toward the behaviour of the initially spherical cloud. The oblate (prolate)
curve presents large oscillations which become mostly damped at t∗ ≈ 100. The
observed oscillations are related to the coupling between the toroidal circulations
and the relaxation of the perturbation. The experimental data present a much larger
growth than the numerical predictions. The same dissimilarity was observed for the
growth in time of R∗ in § 5.

Larger horizontal expansion of the cloud in the experiments
Excluded volume effects not accounted for in the model!

Élisabeth Guazzelli Université de Paris, CNRS
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Leakage and breakup

Mechanism leading to particle leakage from the cloud

Departure from the closed toroidal circulation due to local unsteadiness of the
velocity of the particles
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Leakage and breakup

Instability and breakup

A cloud of spheres A cloud of fibers Beyond Stokes Conclusions And now . . . far beyond Stokes . . .

Breakup

Instability and breakup
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Computed pressure and flow fields
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Falling clouds of particles

Flow and pressure fields computed at successive times in the vertical plane through
the vertical axis of symmetry and in the instantaneous reference frame of the cloud
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Leakage and breakup

Physical insight using a cloud having a torus shape
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Breakup

Physical insight using a cloud having a torus shape

Vc

in the cloud reference frame
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For γ ! γc = 1.64 ± 0.05, the streamlines pass through the
hole in the centre of the torus

Break-up = change in flow configuration created by the point
particles when γ reaches γc
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Breakup

Physical insight using a cloud having a torus shape

Vc

in the cloud reference frame
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For γ ! γc = 1.64 ± 0.05, the streamlines pass through the
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Break-up = change in flow configuration created by the point
particles when γ reaches γc
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Falling clouds of particles

For γ > γc = 1.64± 0.05, the streamlines pass through the hole in the
centre of the torus

Break-up = change in flow configuration created by the point
particles when γ reaches γc
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Leakage and breakup

Criterion for destabilization
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Breakup

Criterion for destabilisation
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In point-particle simulations for different N0 = 1500 and 3000,
break-up at γc ≈ 1.64

In experiments for N0 ≈ 1500 (φ = 20 ± 3%), break-up occurs
for a larger γc ≈ 2.4
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Falling clouds of particles

In point-particle simulations for different N0 = 1500 and 3000, break-up
at γc ≈ 1.64

In experiments for N0 ≈ 1500 (φ = 20± 3%), break-up occurs for a larger
γc ≈ 2.4
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Sedimentation of a single fiber

Drag for perpendicular motion
approximately twice that for parallel
motion

A fiber parallel to gravity settles
approximately twice as fast as a fiber
perpendicular to gravity

A fiber inclined at an angle to vertical
does not settle vertically but drifts
sideways

Coupling between orientation and velocity
Batchelor JFM 1970; Cox JFM 1970

Élisabeth Guazzelli Université de Paris, CNRS
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Faster evolution of the cloud of fibers!
A Sedimenting Cloud of Rigid Fibres 357

(a) (b)
t* = 0

t* = 22

t* = 62

t* = 115

t* = 126

Figure 1. Typical evolution of a cloud of rigid fibres. (a) Experiment with N0 ≈ 1000 and
c ≈ 30, which corresponds to a cloud volume fraction of 5%. (b) The fiblet algorithm for
c =40 and N0 = 1000. The side views are accompanied by bottom views on the small side
pictures. The complete dynamics coming from different runs are shown in the supplementary
movies.Élisabeth Guazzelli Université de Paris, CNRS
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Minimal description: The “fiblet” (point-fiber)

Dimensionless equation for translational velocity

ṙ∗α =
5c

8N0
(I + pαpα) · eg +

5

8N0

N0∑
β 6=α

(
I

|r∗| +
r∗r∗

|r∗|3
)
· eg

with c = 2R0 ln(2A)/l and aspect ratio A = l/d
Dimensionless equation for rotational velocity

ṗ∗α =
5

8N0
(I− pαpα) ·

N0∑
β 6=α

[
(r∗ · pα) I− pαr∗ − r∗pα

|r∗|3 +
3 (r∗ · pα) r∗r∗

|r∗|5
]
· eg

Self-term prevails over hydrodynamic interactions between
the particles as c becomes large relative to N0

Park, Metzger, Guazzelli & Butler JFM 2010

Élisabeth Guazzelli Université de Paris, CNRS
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Evolution of the fiblet cloud

Élisabeth Guazzelli Université de Paris, CNRS

Sedimentation of particles



34/85

1, 2, 3 . . . spheres A cloud of spheres A cloud of fibers Beyond Stokes And beyond . . .

Break-up time
358 J. Park, B. Metzger, É. Guazzelli and J. E. Butler
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Figure 2. Mean value of the break-up time, ⟨t∗
b ⟩, vs. (a) c and (b) c/N0. The error bars

correspond to the variance between runs.
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Figure 3. Simulation results for the time evolution of (a) the mean horizontal radius of the
cloud, ⟨R∗⟩, and (b) the cloud settling velocity, ⟨V ∗⟩ for clouds having N0 = 1000. The two
figures also show the values of R∗ and V ∗ for five individual experimental runs. The dashed
lines are guidelines for comparison with the initial radius and velocity of the cloud.

is a considerable variation among runs, the further decrease of ⟨V ∗⟩ is comparable in
experiments and simulations having the same c/N0.

The influence of the self-term on the rate of growth of the cloud, ⟨dR∗/dt∗⟩, is
examined with more detail in figure 4 for the fiblet simulations. Figure 4(a) shows
the evolution of ⟨dR∗/dt∗⟩ for c =10 according to each contribution: the self-term
and the hydrodynamic term in (2.5). Comparing each contribution, the hydrodynamic
term controls ⟨dR∗/dt∗⟩ and the self-term seems to contribute only relatively small
fluctuations. However, even being small, the self-term contribution is fundamental to
the accelerated break-up of clouds of fibres as compared to clouds of spheres. The
value of ⟨dR∗/dt∗⟩ fluctuates between negative and positive values as the fibres tumble
within the cloud, but the overall value becomes positive (indicating an expansion of
the horizontal radius) and increases rapidly just prior to break-up of the unstable
torus in stark contrast with the situation shown in figure 4(b) in which the self-term
has been removed as in a Stokeslet cloud (c = 0).

Sole dependance on c/N0 (self motion of the anisotropic particles)
Particle anisotropy accelerates the expansion of the cloud

and leads to a faster break-up

Élisabeth Guazzelli Université de Paris, CNRS
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Spheres at finite inertia

Limit of Stokes approximation
Influence of inertia far from the sphere

Far from the fixed sphere: U + u with u = O(Ua/r) leading Stokeslet

Ratio between inertial and viscous effects:

|ρ [(U + u) · ∇] (U + u)|
|µ∇2(U + u)| ∼ U2a

r 2
/
νUa

r 3
∼ Ua

ν

r

a

(
= Rep

r

a

)
∼ O(1) for r/a = O(Re−1

p )

Élisabeth Guazzelli Université de Paris, CNRS
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Spheres at finite inertia

Oseen solution for a translating sphere

Near field: Stokes solution

Far field:

Radial outflow
∼ 1/r 2

compensated by
Wake inflow
∼ 1/r

Loss of fore-aft symmetry above inertial screening length ` = a/Rep = ν/U0
Oseen Ark. Mat. Astron. Fys. 1910

Élisabeth Guazzelli Université de Paris, CNRS
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Spheres at finite inertia

2 settling spheres at finite inertia
Drafting, kissing, and tumbling

Interaction more complex due to the
nature of the fluid velocity due to a
sphere (wake behind the sphere and
radial source flow in other directions)

Fortes, Joseph & Lundgren JFM 1987
Feng, Hu, & Joseph JFM 1994

Élisabeth Guazzelli Université de Paris, CNRS
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The regimes of evolution for a falling cloud

Dimensional analysis for a sedimenting cloud at finite Re

Seven independent physical quantities:

Viscosity µ and density ρf of the fluid
Radius a and density ρp of the particles
Radius R0 and number of particles N0 of the cloud
Gravitational acceleration g

Underlying consideration: long range interactions dominant –
short range interactions neglected (no dependance on a/R0)

Appropriate dimensionless numbers:

N0 or φ = N0(a/R0)3

Dimensionless inertial length `∗ = `/R0 = (a/R0)/Rep or
particle Reynolds number Rep = U0aρf /µ = (a/R0)/`∗

Cloud Reynolds number Rec = V0R0ρf /µ
Stokes number St = 2

9 (ρp/ρf )Rep � 1

Élisabeth Guazzelli Université de Paris, CNRS
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The regimes of evolution for a falling cloud

Regimes of evolution for a sedimenting cloud

10
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1
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2

Re
p

R
0/
a

Bosse et al.

Metzger et al.

Macro-scale inertia

Stokes cloud

Micro-scale inertia 

(R
0 /a
)~
R
e

p -1

(R
0 /a)~R

e
p

-1/3
φ -1/3

(φ~5%
)

(R
0 /a)~R

e
p

-1/3
φ -1/3

(φ~50%
)

Stokes cloud:
Rep and Rec � 1

Macro-scale inertia:
Rec(∼ φRepR3

0/a
3) ∼ 1

Micro-scale inertia:
` = a/Rep ∼ R0

Subramanian & Koch JFM 2008

Pignatel, Nicolas & Guazzelli JFM 2011

Élisabeth Guazzelli Université de Paris, CNRS
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The regimes of evolution for a falling cloud

Macro-scale inertia

Navier-Stokes equations solved in Fourier space – Lagrangian point-particle tracking –
two-way coupling + Experiments in ‘Macro-scale inertia’ regime
Bosse, Kleiser, Härtel & Meiburg PoF 2005; Pignatel, Nicolas & Guazzelli JFM 2011

Élisabeth Guazzelli Université de Paris, CNRS
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The regimes of evolution for a falling cloud

Micro-scale inertia

Oseenlet simulations + Experiments in ‘Micro-scale inertia’ regime
Pignatel, Nicolas & Guazzelli JFM 2011

Élisabeth Guazzelli Université de Paris, CNRS
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The regimes of evolution for a falling cloud

Oseenlet simulations

Steady Oseen equations still linear (but no longer reversible)

ṙαi = U0δi3 +
F

8πµ

∑
α 6=β

{
ri
r2

[
2`

r
(1− E )− E

]
+

E

r
δi3

}

with ri ≡ rαi − rβi , E = exp(−(1 + x3/r)r/2`), gravity i = 3

Dimensionless equations (length-scale = R0 and velocity-scale
= V0 = N0F

5πµR0
of the initially spherical cloud)

˙r∗
α
i =

5

8N0

∑
α6=β

{
r∗i
r∗2

[
2`∗

r∗
(1− E )− E

]
+

E

r∗
δi3

}
Pignatel, Nicolas & Guazzelli JFM 2011

Élisabeth Guazzelli Université de Paris, CNRS
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The regimes of evolution for a falling cloud

Micro-scale inertia: Simulations

Oseenlet simulations with N0 = 2000 and `∗ = 1

Élisabeth Guazzelli Université de Paris, CNRS
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Instability and breakup

Mechanisms for torus transition and breakup

N0 = 2000 and `∗ = 1 (left) and `∗ = 20 (right)

Evolution toward a torus shape due to fluid inflow instead of particle depletion
in Stokes regime

Breakup at larger aspect ratio than in Stokes regime because front
incoming-flow has to overcome the rear incoming-flow

Élisabeth Guazzelli Université de Paris, CNRS
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Stokes and inertial regimes and beyond . . .

Long-range and many-body character of the hydrodynamic interactions →
chaotic behavior when the number of particles becomes larger than two

Multi-body hydrodynamic interactions + coupling between hydrodynamics
and the micro-arrangement of the particles → collective dynamics

While the suspension cloud may be modeled as an effective medium of
excess mass, the discrete nature of the suspension is a fundamental
ingredient in understanding the observed phenomena

Success of point-particle approach (even though excluded volume effects
not accounted for!)

Different regimes: Stokes, inertia, and far beyond . . .

Élisabeth Guazzelli Université de Paris, CNRS
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Falling clouds of particles in vortical flows

Marchetti, Bergougnoux & Guazzelli JFM 2020

Élisabeth Guazzelli Université de Paris, CNRS
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Part II

Settling particles

Élisabeth Guazzelli Université de Paris, CNRS
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Ubiquitous sedimentation

Élisabeth Guazzelli Université de Paris, CNRS
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Sedimentation in a dilute dispersion of spheres 

By G. K. BATCHELOR 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

(Received 26 August 1971) 

The dispersion considered consists of a large number of identical small rigid 
spheres with random positions which are falling through Newtonian fluid under 
gravity. The volume fraction of the spheres (c) is small compared with unity. The 
dispersion is statistically homogeneous, and the axes of reference are chosen so 
that the mean volume flux across any stationary surface is zero. The problem 
is to determine the mean value of the velocity of a sphere (U). In 3 3 there is de- 
scribed a systematic and rigorous procedure which overcomes the familiar dif- 
ficulty presented by the occurrence of divergent integrals, essentially by the 
choice of a quantity V whose mean value can be found exactly and which has the 
same long-range dependence on the position of a second sphere as U so that the 
mean of U - V can be expressed in terms of an absolutely convergent integral. 
The result is that, correct t o  order c, the mean value of U is U,( 1 - 6.55 c), where 
U, is the velocity of a single sphere in unbounded fluid. The only assumption 
made in the calculation is that the centres of spheres in the dispersion take with 
equal probability all positions such that no two spheres overlap; arguments are 
given in support of this assumption, which is expected to be valid only when the 
spheres are identical. Calculations which assume a simple regular arrangement of 
the spheres or which adopt a cell model of the hydrodynamic interactions give 
the quite different result that the change in the mean speed of fall is proportional 
to d, for reasons which are made clear. 

The general procedure described here is expected to be applicable to other 
problems concerned with the effect of particle interactions on the average proper- 
ties of dispersions with small volume fraction of the particles. 

1. Introduction 
When a homogeneous mixture of solid particles and a fluid is allowed to stand 

in a container, the particles settle out under gravity at  a rate which depends on 
their size, shape, excess weight and concentration. The dependence on concen- 
tration arises from the interaction between particles, exerted by means of the 
velocity distribution generated in the fluid surrounding each moving particle. 
The effects of size and shape of the particles take the simplest possible form when 
the particles are identical rigid spheres of such small size that the Reynolds num- 
ber of the fluid motion is small and inertia forces can be neglected. The mean 
speed of fall of a particle is then proportional to the excess weight and is other- 
wise a function primarily of the volume fraction of the particles. Some authors 

246 G .  K .  Batchelor 

have maintained that the shape of the container walls is also relevant, but this 
is intrinsically unlikely, at  any rate in a case in which the vessel contains a large 
number of parbicles uniformly dispersed throughout the fluid. The settling speed 
is found to be less than for an isolated particle (in the absence of particle ag- 
glomeration, of the kind reported by Kaye & Boardman 1962), and the pheno- 
menon is often referred to as ‘hindered settling’. 

In  t,he case of a cloud of particles which is surrounded by clear fluid, instead 
of being bounded by vessel walls, the motion of the particles depends also on the 
dimensions and shape of the cloud, like a finite-sized blob of one fluid falling 
through a second and less dense fluid. This presents a different problem, usually 
one in which the velocity of the cloud as a whole becomes so large that inertia 
forces are significant. The essential difference between the two problems lies not 
so much in the presence or absence of rigid boundaries as in the spatial variation 
of the statistical properties of the dispersion. We assume here that the distribu- 
tion of particles in the ambient fluid is statistically homogeneous, and that; the 
linear dimensions of the outer boundary of the fluid are large relative to  the 
average distance between particles. As a consequence, no spatial variation of the 
mean velocity in the dispersion can be generated by gravity. 

It is convenient in theoretical work to use axes of reference such that the mean 
velocity at  a point in the dispersion (or, equivalently, the mean flux of material 
volume per unit area across any small stationary plane surface in the dispersion) 
is zero, although there are some practical contexts, such as a fluidized bed of 
particles, in which different axes are more natural. 

Although there have been many contributions to the problem of determining 
the effect of concentration on the settling speed of small rigid spheres, beginning 
with Smoluchowski (1912)) it  has remained a challenge, even for the case of a dilute 
dispersion for which the volume fraction of the particles is small compared with 
unity. Many different theoretical and empirical formulae have been advanced, 
but not one of the available theoretical arguments is wholly satisfactory. The 
available observations appear not to be sufficiently accurate or consistent to 
specify the relationship closely. An account of past work on the problem is to be 
found in chapter 8 of the book by Happel & Brenner (1965). 

The difficulty in the determination of the hydrodynamic interaction of the 
particles derives from the slowness with which the velocity disturbance in the 
fluid due to an isolated falling particle decreases to zero at increasing distance and, 
to a lesser extenb, from the random arrangement of the particles in a real dis- 
persion. The magnitude of the fluid velocity at  distance r from a single sphere 
of radius a falling with speed Uo varies asymptotically as Uoa/r, and so a ,straight- 
forward attempt to sum the contributions t o  the velocity a t  one point from an 
indefinitely large number of falling spheres in a homogeneous dispersion leads 
to a series or an integral which diverges strongly. The main objective of work on 
the problem has been to overcome this obstacle. 

Previous theoretical investigations fall into three groups, corresponding to the 
assumptions made about the arrangement of the spherical particles in the dis- 
persion and the nature of their interaction. In  the first group are calculations 
which suppose, for mathematical convenience, that the centres of the spheres 
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Burgers’s calculation in one detailed respect but erred in not following Burgers 
in another respect. For a random distribution of spheres Burgers and Pyun & 
Yixman found that the average change in the fall speed is proportional t o  c, 
a result which is not generally accepted in the literature, perhaps because the 
statistical methods used t o  obtain it were neither clear nor convincing, and per- 
haps because it is so different in form from that found either for a regular array of 
spheres or from the cell model. 

In  this paper we shall take it for granted that in a dispersion containing a 
large number of particles the arrangement of the particles in the ambient fluid 
is disordered and that only a statistical description of the particle locations is 
significant. It will be shown by rigorous methods that the change in the mean 
settling speed due to  particle interactions in a dilute dispersion of rigid spheres 
is proportional to  c, and the constant of proportionality will be determined. 

There are some common features of the present problem of determining the 
velocity of sedimentation in a dilute dispersion correct to the order c and the prob- 
lem of finding one of the bulk transport properties of a dilute dispersion correct 
to the order c2, where in both cases c is the volume fraction of the phase present 
in the form of discrete particles. Included among these transport properties are 
the effective thermal conductivity of a stationary dispersion, the effective vis- 
cosity of a suspension of neutrally buoyant particles in simple shearing motion, 
and the effective elastic shear modulus for a dispersion of one solid material in 
another. I n  all these cases it is necessary to take into account the interaction of 
different particles, and in all these cases the straight-forward process of summing 
the separate effects of each of many particles on a given particle is frustrated 
by failure of the sums to converge absolutely. The general method that has been 
devised t o  overcome the difficulties of the present sedimentation problem is 
expected to be applicable also t o  these other similar problems. 

2. Formulation of the problem 
We consider a statistically homogeneous dispersion of identical rigid spherical 

particles of radius a in a Newtonian ambient fluid of viscosity p. The flux of 
volume of material (which may be either fluid or solid) per unit area across 
any stationary plane surface in the dispersion defines a local velocity vector 
whose mean is uniform, and the axes of reference are chosen so that this mean 
velocity is zero. Inertia forces on either the solid particles or the fluid will be 
neglected. 

The translational velocity of one particular sphere a t  one instant in one 
realization of the dispersion is U say. If this sphere were alone in infinite fluid 
and falling under gravity its velocity would be 

where ps is the density of the solid particle and p is that of the fluid. The velocity 
U of a particular sphere differs from U, owing to the hydrodynamic interaction 
between the various particles in the dispersion, and U -U, is a random quantity 

Élisabeth Guazzelli Université de Paris, CNRS
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Sedimentation of particles



54/85

Settling spheres Beyond Stokes Settling fibers And beyond . . .

Mean Velocity

Uniformly dispersed spheres
Summing the effects between pairs of particles

Velocity of a pair of spheres at a separation r :

US + ∆U where ∆U(r) incremental velocity due to a second particle

Averaging over all possible separations which occur with conditional
probability P1|1(r)

US +

∫
r≥2a

∆U︸︷︷︸
aUS
r

P1|1(r)︸ ︷︷ ︸
ng(r)=n

dV

Divergence with the size L of the vessel as∫ L

2a

r−1r 2dr ∼ L2

Strong divergence due to long-range hydrodynamic interactions

Élisabeth Guazzelli Université de Paris, CNRS
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Mean Velocity

Sedimentation of spheres in a vessel

Élisabeth Guazzelli Université de Paris, CNRS
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Mean Velocity

Hindered settling

Ham & Homsy IJMF 1988

Nicolai, Herzhaft, Hinch, Oger & Guazzelli PoF 1995

Mean velocity:

〈u〉p = USf (φ)

Richardson-Zaki 1954: f (φ) = (1− φ)n with
n ≈ 5 at low Re

Main effect = Back-flow

Renormalization of hydrodynamic interactions:
f (φ) = 1 + Sφ+ O(φ2) with S = −6.55
assuming uniformly dispersed rigid spheres
Batchelor JFM 1972

Results depend on microstructure in turn
determined by hydrodynamics

Élisabeth Guazzelli Université de Paris, CNRS
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Fluctuations

Velocity fluctuations

Ham & Homsy IJMF 1988

Nicolai, Herzhaft, Hinch, Oger & Guazzelli PoF 1995

Random walk through the
suspension after a large enough
number of hydrodynamic interactions

Diffusive nature of the long-time
fluctuating particle motion

Anisotropic hydrodynamic
self-diffusivities

Large velocity fluctuations of the
same order as the mean particle
velocity

Anisotropic fluctuations with a larger
value in the direction of gravity

Élisabeth Guazzelli Université de Paris, CNRS
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Fluctuations

Divergence paradox for the velocity fluctuations

‘Blob’ of size l (aφ−1/3 < l < L)
containing N = φl3/a3 spheres

Caflisch & Luke 1985; Tory & Pickard 1986;
Hinch 1988

Random mixing of the suspension creates
statistical fluctuations of O(

√
N) on all

length-scales l

Fluctuations in the weight√
N 4

3
πa3(ρp − ρf )g balanced by Stokes drag

on the blob 6πµlw ′

Convection currents, also called ‘swirls’, on
all length-scales l

w ′(l) ∼
√
N 4

3
πa3(ρp − ρf )g

6πµl
∼ US

√
φ
l

a

Fluctuations on the length-scale of the
container are dominant

w ′ ∼ US

√
φ
L

a
diverge with L

Élisabeth Guazzelli Université de Paris, CNRS
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Fluctuations

More theories . . .

Koch & Shaqfeh 1991: Debye-like screening

Tong & Ackerson 1998: turbulent convection analogy

Levine et al. 1998: stochastic model

da Cunha 1995, Ladd 2002: impenetrable bottom

Brenner 1999: wall effect

Luke 2000: stratification → fluctuation decay

Tee et al. 2002, Mucha et al. 2003-04: diffusive spreading of the front →
stratification → fluctuation decay

Nguyen & Ladd 2005: polydispersity → stratification

Hinch 1985, Asmolov 2004, Luke 2005: bottom and top = sink of large-scale
disturbances

Élisabeth Guazzelli Université de Paris, CNRS
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Fluctuations

Relaxation of large-scale fluctuations
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Initially, the large-scale fluctuations dominate the dynamics, in agreement with
predicted w ′ ∼ US (φ L

a
)1/2. But, they are transient as the heavy parts settle to the

bottom and light parts raise to the top
Guazzelli PoF 2001; Bergougnoux et al. PoF 2003; Chehata Gómez et al. PoF 2009
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Fluctuations

Left with smaller-scale fluctuations
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Then, smaller-scale fluctuations (of size ≈ 20 aφ−1/3) are dominant in a steady
plateau regime until the arrival of the upper front

Segrè et al. 1997; Guazzelli 2001; Bergougnoux et al. 2003; Chehata Gòmez et al. 2009; Snabre et al. 2009
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Fluctuations

Steady plateau fluctuations

FL43CH05-Guazzelli ARI 15 November 2010 13:10
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Figure 3
Dominance of the remaining smaller-scale fluctuations until the arrival of the upper sedimentation front. The velocity field is from
particle image velocimetry sampling the entire cell cross section for a window covering the lower one-fourth of the cell height
(Bergougnoux et al. 2003, Chehata Gómez et al. 2009). The timescale is the Stokes time tS = a/VS.
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Figure 4
Velocity fluctuations normalized by the mean ⟨w⟩ in the (a) vertical and (b) horizontal directions versus volume fraction. The dark-blue
line is the correlation 3φ1/3 and the light-blue line 2φ1/3. The red line is the correlation 1.5φ1/3 and the orange line φ1/3. Experiments:
open diamonds at Re p < 10− 4 (Ham & Homsy 1988), filled circles at Re p < 10− 3 (Nicolai et al. 1995), light-color filled diamonds at
Re p ≈ 10− 4 (Segrè et al. 1997), dark-color filled diamonds at Re p < 10− 4 (Segrè et al. 2001), dark-color filled upside-down triangles at
Re p < 10− 4 (Chehata Gómez et al. 2009), light-color filled triangles at Re p ≈ 10− 3 (Snabre et al. 2009). (Insets) Linear plot of relative
fluctuations versus volume fraction.
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The velocity fluctuations increase roughly as φ1/3 at low φ, in agreement with

w ′ ∼ US (φ `
a

)1/2 with ` ≈ 20 aφ−1/3. The vertical fluctuations reach a maximum at
approximately φ = 0.3, where they are 1.7 times the mean settling speed, and then

decrease. The anisotropy between the vertical and horizontal fluctuations is ≈ 2 and
even smaller for φ > 0.2.
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Microstructure

Particle occupancy distribution in a sheet volume
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Sedimentation of particles



63/85

Settling spheres Beyond Stokes Settling fibers And beyond . . .

Microstructure

Particle occupancy distribution in a sheet volume
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Microstructure

Particle occupancy distribution in a sheet volume
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Similar (rather symmetric) distributions
at initial time and in the plateau region

Slightly shorter and fatter than a Poisson
distribution

Slightly sub-homogeneous structure
(in the sense that the variance grows faster

than the mean)

Bergougnoux & Guazzelli PoF 2009

σN versus 〈N〉 for different sampling boxes
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Best Fit

Poisson

n=0.5

n=0.6

Not a perfect random positioning of the particles:
σN = 〈N〉n with n > 0.5 increasing with increasing
polydispersity and φ and decreasing with confinement

No evolution of this power law with time until the
sedimentation front enters the imaging window
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6 Settling spheres
Mean Velocity
Velocity fluctuations and hydrodynamic diffusion
Microstructure

7 Beyond Stokes: Settling spheres at small inertia

8 Settling fibers
The observed regimes
Clusters and streamers
Structural instability

9 And beyond . . .
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Screening of the fluctuations by inertia
Rea = ρf aUS/µ� 1 whereas ReL = ρf LUS/µ = ReaL/a > 1

Hinch 1988; Brenner 1999 (alternative
argument leading to the same scaling)

Initial large-scale convection currents limited
by inertial forces ρf w

′2l2 rather than by
viscous forces 6πµlw ′

w ′ ∼ √ag φ1/4(l/a)−1/4

Large-ReL prediction shows a decrease with
the size of the container whereas the
Stokes-regime prediction shows an increase

Expected fluctuations with length-scale at the
crossing

w ′ ∼ US φ
1/3Re

−1/3
a

Screening of the fluctuations by inertia with a

decrease in fluctuations scaling as Re
−1/3
a
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Velocity-field structure for small Rea but finite ReL
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Same relaxation of large-scale fluctuations
as observed in the Stokes regime for dilute

(φ = 0.003) sedimenting suspensions in
large containers (larger than 20 aφ−1/3)
when inertia is progressively increased

Bergougnoux & Guazzelli JFM 2021 (special JFM Volume
in celebration of the George K. Batchelor centenary)
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Sedimentation of particles



67/85

Settling spheres Beyond Stokes Settling fibers And beyond . . .

Plateau velocity fluctuations versus (a) Rea and (b) ReL
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Rea . 4 10−4 or ReL . 0.1: Stokes regime of constant fluctuations
w′∞
US
≈ 0.52 and

v′∞
US
≈ 0.22

Rea & 4 10−4 or ReL & 0.1: Decrease of fluctuations with increasing inertia ∼ Re−0.1
a and ∼ Re−0.1

L
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Scaling argument for weak inertia
Rea = ρf aUS/µ� 1 whereas ReL = ρf LUS/µ = ReaL/a ∼ O(1)

‘Blob’ of size l (aφ−1/3 < l < L)
containing N = φl3/a3 spheres

Statistical fluctuations of O(
√
N), also called

‘blob’, on length-scale l

Fluctuations in the weight√
N 4

3
πa3(ρp − ρf )g balanced by transitional

drag on the blob 6πµlw ′F(Rel ) with
Rel = ρf lUS/µ = Real/a

Convection currents on length-scale l

w ′(l) ∼ US

F(Rel )

√
φ
l

a

with F(Rel ) given by correction of
Oseen: 1 + 3Rel/4
Schiller-Naumann: 1 + 0.15Re0.687

l
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Plateau velocity fluctuations versus Rea
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scaling with Schiller-Naumann correction

scaling with Oseen correction

Decent agreement with
Schiller-Naumann correction for a
constant ultimate blob size
l ≈ `‖∞ ≈ `⊥∞ ≈ 30aφ−1/3

Onset of inertial effect for
Rel = ρf lUS/µ = Real/a ∼ 0.1

→ Reca ∼ 5 10−4

Reduction of the fluctuations due to the small inertial increase of the drag on the
density fluctuation blob

Bergougnoux & Guazzelli JFM 2021 (special JFM Volume in celebration of the George K. Batchelor centenary)
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Particle occupancy distribution in a sheet volume
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Stokes regime: similar (rather symmetric)
distributions at initial time and in the plateau
region close to Poisson (slightly shorter and
wider)

Weak-inertia regime: distribution at initial time
(due to the initial mixing) rather symmetric
whereas positively skewed at later times

σN versus 〈N〉 for different sampling boxes
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(a) ReL = 0.07 and (b) ReL = 4.20

Stokes regime: close to Poisson, σN ∼ 〈N〉0.59

Weak-inertia regime: at t = 0 (initial mixing),

σN ∼ 〈N〉0.59 similar to Stokes case whereas at

later time σN ∼ 〈N〉0.69

With increasing inertia, the structure becomes more
sub-homogeneous (in the sense that the variance grows
faster than the mean): σN ∼ 〈N〉n with n > 0.5,
increasing with increasing inertia
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Sub-homogeneous holely structure revealed by α-shapes

(a) particles of batch A at ReL = 24.08 and (b) particles of batch B at ReL = 4.20 in the plateau region

Large holes having sizes ranging from 5 to a little more than 20 aφ−1/3
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The observed regimes
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The observed regimes

Sedimentation of fibers in a vessel
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The observed regimes

Mean velocity and orientation in dilute suspensions

Enhanced sedimentation and vertical orientation
Fiber-tracking in an index-matched suspension (φ = 0.005 and A=11)

Herzhaft, Guazzelli, Mackaplow & Shaqfeh PRL 1996, Herzhaft & Guazzelli JFM 1999
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The observed regimes

Mean velocity versus concentration
FL43CH05-Guazzelli ARI 15 November 2010 13:10
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Figure 7
(a) Mean vertical velocity normalized by the Stokes velocity of a vertical fiber VS∥ computed using equation 2.1 of Herzhaft & Guazzelli
(1999) and (b) velocity fluctuations normalized by the mean in the vertical (blue) and horizontal (red ) directions plotted as a function of
fiber volume fraction. The solid gray line is the Richardson-Zaki correlation (1 − φ)n with n = 9. Experiments: A = 5 ( filled upside-down
triangles), A = 11 ( filled squares), A = 20 ( filled diamonds), and A = 32 ( filled circles) at Re p ≈ 10− 4 (Herzhaft & Guazzelli 1999); A = 17
( filled triangles) at Re p ≈ 10− 6 (Turney et al. 1995b); and A = 10 (crosses) at Re p ≈ 10− 4 (Anselmet 1989). Simulations: A = 15.6 (open
triangles) (Mackaplow & Shaqfeh 1998), A = 11 (open squares), and A = 32 (open circles) (Butler & Shaqfeh 2002). (Inset) Close-up of
relative velocity fluctuations for low volume fractions.

an isolated vertical fiber VS∥, as seen in Figure 7a. The mean velocity is found to increase at low
φ, to reach a maximum (more or less pronounced, depending on A) at φ ≈ 0.005, and then to
decrease with increasing φ. No simple scaling has been found to describe this behavior, which is
probably a complex function of both φ and A. For φ > 0.01, the fibers are still oriented in the
direction of gravity, but the mean velocity becomes hindered and depends not on nl3 but on the
volume fraction φ. The hindrance is more severe than in the case of spheres. A Richardson-Zaki
law, (1 − φ)n with n ≈ 9, is in good agreement with data having different A’s coming from both
fiber-tracking (Herzhaft & Guazzelli 1999) and interface measurements (Turney et al. 1995b) (see
Figure 7a). In this regime, visualization shows that the fibers form a loosely connected network
and the fluid backflow goes up through holes in the network. Figure 7a also shows the predictions
of a Monte Carlo simulation using a slender-body approximation (Mackaplow & Shaqfeh 1998),
which are of the same order of magnitude as the experimental data. But the comparison should
be handled with care as this simulation assumes that the suspension is homogeneous and the
orientation is isotropic.

The particle velocity fluctuations were found to increase with increasing φ across both dilute
and semidilute regimes, as shown in Figure 7b. These fluctuations are seen to be very strong,
reaching values of ≈ 9 times the mean in the vertical direction for φ = 0.15 (see Figure 7b). The
fluctuation anisotropy is independent of φ and A and has a value of ≈ 3, larger than in the case of
spheres. Another important finding is that the orientation distributions, which have a substantial
alignment in the direction of gravity, are quite similar whatever φ and A.

3.2. The Structural Instability
A linear stability analysis has predicted the instability observed at low concentration (Koch &
Shaqfeh 1989). The authors consider alternating tall columns with more and less fibers as the
number density of fibers varies horizontally as n0 + n1(t) cos kx. At low Reynolds numbers, this
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Experiments: A = 5 (filled down-triangles),
A = 11 (filled squares), A = 20 (filled
diamonds), A = 32 (filled circles) (Herzhaft &
Guazzelli 1999), A = 17 (filled up-triangles)
(Turney et al. 1995), A = 10 (crosses)
(Anselmet 1989)

Simulations: A = 15.6 (open up-triangles)
(Mackaplow & Shaqfeh 1998), A = 11 (open
squares) and A = 32 (open circles) (Butler &
Shaqfeh 2002)

Correlation: (1− φ)9 (solid line)

The mean velocity is found to increase at low φ, to reach a maximum (more or less
pronounced, depending on aspect ratio, A) at φ ≈ 0.005, and then to decrease with
increasing φ (the hindrance is more severe than in the case of spheres)

Élisabeth Guazzelli Université de Paris, CNRS
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Clusters and streamers
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Sedimentation of particles



78/85

Settling spheres Beyond Stokes Settling fibers And beyond . . .

Clusters and streamers

Packet instability → Streamers

Fluorescing fibers within a laser sheet
Metzger, Guazzelli & Butler PRL 2005, Metzger, Butler & Guazzelli JFM 2007
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Clusters and streamers

Large-scale streamers

t=0 t=33 t=99 t=132

-2Vs

3Vs

Vertical velocity versus time from PIV measurements
Metzger, Guazzelli & Butler PRL 2005, Metzger, Butler & Guazzelli JFM 2007
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Structural instability
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Structural instability

Modeling the instability: linear stability analysis
534 D. L .  Koch and E .  8. G .  8haqfeh 

‘ Extensional ’ ‘Compressional ’ 
quadrant 1 quadrant 

Low particle High particle 
density density 

FIQURE 3. Schematic illustration of  the  instability mechanism. A horizontal normal mode particle 
density perturbation drives a vertical shear flow. The streamlines o f  the  extensional component o f  
the  local, linear shear field are illustrated. The flow field tends t o  increase the particle density of 
orientations within the ‘extensional quadrant ’ - the quadrant consisting of orientations whose 
projection into the plane of shear is within an angle of $t of the extensional axis. A particle is drawn 
in the most favoured orientation. Particles with orientations in the extensional quadrant sediment 
with a horizontal component in the direction of increasing particle density, thus causing a growth 
of the particle density perturbation. 

density fluctuations with dimensionless wavenumber k* z O( 1) or, equivalently, 
dimensional wavelengths of order (nZ)-i will predominate. 

We have seen that suspensions of spheroidal particles are unstable to particle 
density perturbations with wavenumbers in the range 0 < k* < 1 .  The type of 
normal-mode perturbation with the maximum growth rate is apparently a wave of 
horizontal wavenumber and k* + 0. The growth rate of the instability decreases as 
y+ 1, i.e. as the particles become spherical. Note that when (y-  11 < q5 two particle 
interactions will have a larger effect on the sedimentation of velocity than does the 
particle orientation. Here, q5 is the particle volume fraction. The stability of 
suspensions of spherical particles is examined in $4. 

4. Stability analysis for suspensions of spheres 
In this section we consider the stability of a dilute, homogeneous, monidisperse 

suspension of spheres in the absence of inertial effects to small particle number 
density perturbations. In  $3, a sedimenting suspension of non-spherical axisymmetric 
particles with fore-aft symmetry was shown to be unstable to  such perturbations. 
The mechanism that led to  that instability involved a coupling between the particles’ 
setttling velocities, their orientations, and the fluid motion induced by the particle 
density perturbations. The fluid motion induced by a particle density perturbation 
caused the particles to rotate such that more particles were aligned with the 
extensional than the compressional axis of the local shear field. Because the velocity 
of the particles depends on their orientation, this change in particle orientation 
induced a net particle flux toward regions of high particle density, thus, leading to 
the instability. 

If one neglected particle interactions entirely in a suspension of spheres (as was 
done in the stability analysis for spheroids), there would be no coupling between the 
particles’ velocit,ies and their orientation, and thus no comparable mechanism of 

Maximum growth rate for long wavelengths
→ size of largest possible wavelength ∼ container size in bounded systems

BUT not observed experimentally
The instability can be expected to become nonlinear by the time the fibers have

fallen through their own length
Koch & Shaqfeh JFM 1989, Guazzelli & Hinch ARFM 2011

Élisabeth Guazzelli Université de Paris, CNRS
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Structural instability

Simulating the instability

Dynamic simulations of rigid fibres 217

(a) (b)

(c) (d )

Figure 2. Plots of the suspension at (a) t = 0, (b) t = 40.0, (c) t = 80.0, and (d ) t = 120.0. The
simulation is for 128 particles with an average number density nl3 = 0.154 and a fibre aspect ratio
of A = 11. Gravity acts in the downward direction, lubrication was not included in this simulation,
and the periodic cell has a height to width ratio of dz/dw = 2.

the fluid velocity at all positions within the periodic cell can be calculated. This
was done for the data of figure 2 at t = 120 and then the vertical component
of the velocity was averaged over the height of the cell to produce figure 3(b).
(Velocities in the direction of gravity are defined as positive.) The position of highest
velocity corresponds to the position of the cluster of particles. The fluid and particle
velocities integrated over any plane of the cell must be zero to satisfy conservation

FL43CH05-Guazzelli ARI 15 November 2010 13:10

–2Vs

3Vs

t = 0t = 0 t = 40 t = 80 t = 120 t = 33 t = 99 t = 132

0
0 10 20 30

20

40

60

80

100

120

140

160

180

0
0 10 20 30

20

40

60

80

100

120

140

160

180

0
0 10 20 30

20

40

60

80

100

120

140

160

180

0
0 10 20 30

20

40

60

80

100

120

140

160

180a b

Figure 8
Evolving streamers (a) in simulation with a bottom bounding wall [time trace of the concentration field over a short interval in the
mid-plane of the box, from left to right, t = 0, 40, 80, and 120 (Saintillan et al. 2006b)] and (b) in experiments [vertical component of
the velocity field extracted from the median plane of the cell by using PIV (Metzger et al. 2007a)]. The timescale is the time for a
vertical isolated fiber to sediment half of its length in the experiments and its length in the simulations.

a b c d

Figure 9
Illustrations of the formation and evolution of clusters in a 4 × 4 × 8 periodic box simulation using slender-body dynamics and
comprising 128 fibers (Butler & Shaqfeh 2002). Panel a is the initial condition, panel b is around the time when the orientation
distribution attains steady state, and panels c and d are snapshots of the clusters at different times. The timescale is the time for an
isolated fiber to sediment half of its length.
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Mackaplow & Shaqfeh JFM 1998, Butler & Shaqfeh JFM 2002, Saintillan, Darve & Shaqfeh JFM 2006,
Gustavsson & Tornberg PoF 2009 . . .
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Sedimentation of particles



83/85

Settling spheres Beyond Stokes Settling fibers And beyond . . .

Structural instability

Simulations versus Experiments

Steady state? Wave-length selection?
Saintillan, Shaqfeh, Darve, Metzger, Guazzelli & Butler APS DFD 2005
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Settling spheres Beyond Stokes Settling fibers And beyond . . .

6 Settling spheres
Mean Velocity
Velocity fluctuations and hydrodynamic diffusion
Microstructure

7 Beyond Stokes: Settling spheres at small inertia

8 Settling fibers
The observed regimes
Clusters and streamers
Structural instability

9 And beyond . . .
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Sedimentation of particles



85/85

Settling spheres Beyond Stokes Settling fibers And beyond . . .

Stokes and inertial regimes and beyond . . .

Long-range nature of the multi-body hydrodynamic interactions
Coupling between hydrodynamics and suspension microstructure
→ Collective dynamics: swirls and streamers

More open problems

Larger concentrations
Bidisperse or polydisperse particles
Anisotropic particles (platelets)
Deformable particles: Saintillan et al. 2006 . . .
Non-Newtonian fluids: Mora, Talini & Allain 2005
Larger inertia: Koch 1993, Yin & Koch 2007,2008 . . .
Turbulence: Aliseda et al. 2002, Yang & Shy 2005, Bosse, Kleiser &
Meiburg 2006 . . .
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