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self-compacting concrete

https://www.youtube.com/watch?v=owKLhrv7Zbk

heavy rain from ex-cyclone Gita turns Rakaia river into a river of rock

https://www.youtube.com/watch?v=5AwFSSX34Wo
— understanding the rheology of suspensions
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Aussillous, Chauchat, Pailha, Medale & Guazzelli JFM 2013

— understanding the rheology of model suspensions ...

and moving toward more complex mixtures of particles and fluids

«Or «Fr o«

3/78
Ay



Effective fluid Two-phase flow Frictional approach Microscopic origin Jamming Complex suspensions
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“A major difficulty in the study of rheology is that one’s intuition about the form of
the constitutive stress relation appropriate to given circumstances is so poorly
developed. It is often hard to know even in broad terms how a given material will
behave, chiefly because we have at our disposal so few definite and well-understood
constitutive relations for non-Newtonian fluids to provide guidance. This difficulty
affects mathematical theory as well as the interpretation of observation, since, for lack
of concrete results which can be used as a testing ground, the hypotheses on which
analysis must perforce be based tend to be artificial and unmotivated. Now the
microscopic structure of a suspension can be precisely specified, and it may be
possible—and not only in principle-to deduce some of the macroscopic properties of the
suspension and to see in explicit terms their relation to the microstructure. This seems
to me to give the mechanics of suspensions an especially important place in current
studies of rheology, in that we have the unusual opportunity of obtaining definite
and explicable constitutive relations which are known to apply to specifiable materials
and which may be used as a reliable guide for intuition.”

Batchelor JFM 1970 The stress system in a suspension of force-free particles
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(@ The suspension as a single effective fluid
o Suspension viscosity

o Non-Newtonian behavior: normal stresses
(@ Beyond the single-fluid view: two-phase flow

o Particle pressure

o Two-phase flow: shear-induced migration
@ An alternative frictional approach
@ Microscopic origin of the rheology

o Microstructure

o Irreversibility — role of contacts
e Approaching jamming

o Origin of the jamming transition

o Influence of particle roughness and shape
(© Towards more complex suspensions
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(@ The suspension as a single effective fluid
o Suspension viscosity

o Non-Newtonian behavior: normal stresses

2) Beyond the single-fluid view: two-phase flow
Particle pressure

Two-phase flow: shear-induced migration

3) An alternative frictional approach

4) Microscopic origin of the rheology
Microstructure

[rreversibility — role of contacts
5) Approaching jamming

Origin of the jamming transition

Influence of particle roughness and shape
6) Towards more complex suspensions

7/78
«4O0>» «Fr «=E)r» « E)» Q>



Effective fluid Two-phase flow Frictional approach
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Microscopic origin Jamming
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A sheared viscous suspension of non colloidal particles

Suspension of neutrally-buoyant hard spheres

Elisabeth Guazzelli

Rheology of granular suspensions

Buoyancy effect

Pp — Pf
Pf

—0

Inertial /viscous effects

).
Re, =227 0

nf

Brownian motion

Pe — 67nrya’
kT

Complex suspensions
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Suspension viscosity

Suspension viscosity
Suspension of rigid, neutrally-buoyant, non-colloidal, mono-disperse, hard spheres
The scaling of the shear stress is viscous: 7 = 7s(¢) n¢y with ¥ = vV2E : E

Viscosity O(¢)
Einstein Ann. Phys. 1906, 1911

" ns =1+ 5¢/2

First effect of particle pair interactions O(¢?)
Batchelor & Green JFM 1972

ns =1+ 2¢+ k¢? with k~5

10004

Hydrodynamic interactions

o P Brady & Bossis ARFM 1988; Nott & Brady JFM 1994 ...
) e ] ) Stokesian dynamics; constitutive laws
01 0z 0.3 0.4 s 0.6 07
P Jamming transition

3 3 ) ) Lerner et al. PNAS 2012; Andreotti et al. PRL 2012 ...
from A Physical Introduction to Suspension Dynamics

Guazzelli & Morris (lllustrations by Pic) Extended network of contacts at jamming :
Cambridge Texts in Applied Mathematics CUP 2012 o 0o q
steric/elastic interactions

Elisabeth Guazzelli Université de Paris, CNRS

Rheology of granular suspensions
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Suspension viscosity

The averaging process for a suspension

Bulk stress

Jamming Complex suspensions
[e]e]

0000
000000000

Ensemble average of the stress distribution in all realizations of the

suspension

Statistically homogeneous suspension

Ensemble average = volume average

Ly = (oj)

1

1/ 1
= = O',"d\/-i-f/ o;idV
v ), vy,

Landau & Lifshitz 1959; Batchelor JFM 1970

Elisabeth Guazzelli

Rheology of granular suspensions
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Suspen5|on viscosity

Particle contribution to the bulk stress

Bulk stress
T = —(p)l + 2nr(e) + £
Particle contribution
/ [oikx; — 5u0/k></]"kd5 = n(Sj;)
Q  Symmetric part (- trace) = stresslet

1 r 2
Sij = 5 / (oikxj + ojkxi — 5(Sl-ja,kx,)nkd.ii for rigid particles with no external forces
S
P

Q  Antisymmetric part = couplet — torque?

1

1
A--:—/ OikXj — OjXi)ngdS = — —€;c T,
ij 25p(lkj "k Xi )Nk 5 ik Tk

75,JkAk = —ejik fS o -n)jxdS=T;

11/78

Elisabeth Guazzelli Université de Paris, CNRS

Rheology of granular suspensions



:@*'E

NO force and NO torque BUT stresslet S = 237 1;a’E>
Result of the resistance of the rigid particle to the straining

mOtion 12/78
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Suspension viscosity

Einstein viscosity
One solid sphere freely suspended (force-free and torque-free)
20
—  stresslet S" = ?m/fa3<e>

Bulk stress of a dilute suspension of solid spheres at O(¢)

20
b2 —(p) + 20 (€) + n-mnea’(e)

4
—(p)l + 2n¢(1 + g )(e) with ¢ = §7ra3n
Einstein effective viscosity
5
ne =1+ §¢

Einstein Ann. Phys. 1906, 1911

Elisabeth Guazzelli

Rheology of granular suspensions

Complex suspensions
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Suspension viscosity

Summing the effects between pairs of particles

@ Method of reflections:

o Flow due to the stresslet of particle 2 at particle 1: u ~ O(r=2)
o Rate of strain at particle 1 due to particle 2: €3 ~ Vu3 ~ O(r—3)
o Incremental stresslet due to a second particle: AS(r) ~ O(r?)

@ Averaging over all possible separations which occur with conditional pair
probability Pyj1(r)

n{S) = nSo + n AS Py (r)(r)dV
r>2a ~——
ng(r)=n

@ Non-convergent integral due to long-range hydrodynamic interactions

L
n AS Pyjy(r)dV ~ n2/ r3rPdr~n®InL

r>2a 2a

15/78
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Effective fluid Two-phase flow Frictional approach Microscopic origin Jamming Complex suspensions

[e] (e]e} 00000000 [e]
00000000@000000000 000000 0000
00000 0000000 0000000 000000000

e]e]

Suspension viscosity

Effective viscosity at O(¢?)

Need renormalization of hydrodynamic interactions
5
s =146+ ke?
@ For pure straining, by trajectory calculation of nonuniform probability
distribution of separation of pairs
k =6.95(~ 7.6 £0.8)

O For pure shear, problem of closed trajectories (depends on distribution on closed
orbits) kA5

O For strong Brownian motion (suspension of hard spheres at uniform equilibrium
+ Brownian contribution coming from pair distribution function out off
equilibrium) k = 6.2 (= 5.2 + 0.99)

Batchelor & Green JFM 1972, Batchelor JFM 1977

16/78
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Batchelor & Green JFM 1972

O Motion exhibits fore-aft symmetry

@ Presence of closed trajectories

@ Compression of particle trajectories near
contact

.". close approach and bundling of
trajectories

Reversible trajectories extremely sensitive to
near-contact perturbations!

See also Irreversibility

17/78
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Effective fluid Two-phase flow Frictional approach
00000000

[e] (e]e}
0000000000800 00000
00000 0000000

Suspension viscosity

Viscosity for larger ¢

Microscopic origin Jamming Complex suspensions
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Computing the viscosity for larger ¢ is very difficult as multi-body
hydrodynamic interactions must be computed together with
determining the microstructure. Another complexity is that the
spheres can interact not only by hydrodynamic interactions
through the liquid but also by direct mechanical contact.

o NO exact analytic calculations

o Simulations with various levels of approximation and
sophistication: from Stokesian dynamics to lattice-Boltzmann
or fictitious domains methods

Elisabeth Guazzelli

Rheology of granular suspensions
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Suspension viscosity

Empirical relations

Microscopic origin Jamming Complex suspensions
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Some of these expressions stem from mean-field approaches. They
recover the Einstein viscosity limit at low concentration and aim to
account for the divergence of the viscosity at ¢.:

5 .
o m/n = (1— £)~5% (Krieger)
o ns/n=(1- %)*2 (Maron-Pierce)

5
ons/n=(1+ 1_“%)2 (Eilers)

c

Elisabeth Guazzelli

Rheology of granular suspensions

19/78

Université de Paris, CNRS



(a) Cone-and-plate rotational rheometer. n = 3T /2wR3Q; (b) Parallel-plate rotational rheometer:
rheometer: n = pgh2 sin 0 /2us

n = 2Th/QrR*; (c) Couette rotational rheometer: 1 = T(Rc — Rp)/mL(Rc + Rb)Rg; (d) Inclined plane

20/78
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Boyer et al. 2011 PS
Boyer et al. 2011 PMMA
Bonnoit et al. 2010 (ange
Bonnoit et al. 2010 (angle
Dagois-Bohy et al. 2015
Dbouk et al. 2013
Ovarlez et al. 2006 (MRI)
Zarraga et al. 2000 (3 different fuids)
Galler et al. 2014 (s, = 0)

Galer et al. 2014 (1, = 0.5)

Mari ot al. 2014 (g
Mari ot al. 2014 (g, = 1)

Sierou & Brady 2002 (s, = 0)
Einstein: 1+ 56/2

Batchelor & Green: 1+ 5¢/2 + 567

=0

Boyer et al. 2011 PS (6, = 0.385)
Boyer et al. 2011 PMMA (¢, = 0.585)
Bonnoit et al. (2010) (angle = 5%, = 0.605)
Bonnoit et al. (2010) (angle = 15%¢. = 0.605)
Dagois-Boby et al. 2015 (6, = 0.50)

Dhonk et al. (2013) (¢, = 0.58)

Ovarlez et al. (2006) (6, = 0.605)

Zarraga et al. (2000) (¢ = 0.58)

Gallier et al. (2014) ( = 0.65)
Gallier et al. (2014) ( 6= 0.61)
Mari et al. 2014 (1, = 0:6, = 0.66)

Mari et al. 2014 (1, = L:g. = 0.58)

Sierou & Brady (2002) (s, = 0:6, = 0.63)
Einstein: 1+ 5/2

Batchelor & Green: 1+56/2 + 567

Krieger: (1 0/6:)7*"

Maron-Pierce: (1 - 6/6,)~*

Eilers: [1+ (50/4)/(1 - /0"

10°

10!

| {x#e0+<o0nc00va

10¢

0.0

0.1 0.2 03

0
0.0 0.2 6 08 10

0.4 0.
¢/¢c

Divergence as (¢ — d)c)72 when ¢ — ¢ with ¢c ~ 0.54 — 0.62 < ¢pcrp ~ 0.64 .. frictional spheres!

Shear-jamming fraction varies depending on size distribution and su:faDceJntF%ctionf Qristic:n)_ .
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Non-Newtonian behavior: normal stresses

Normal stresses in suspensions
Normal stress differences
o Ny =%11 —X»
0 Np =32 —133

Jamming Complex suspensions
oo

0000
000000000

2 (velocity gradient)

1 (flow)

3 (vorticity)

Normal stress differences in non-Brownian suspensions

o Ni, Ny xn¢y linearin ¥y =+v2E: E

©

©

IN2| > N4

o N, negative but sign of Ny more elusive!

N;/7 = O(1) = a;(¢) same divergence as ¢ — ¢,

Gadala-Maria 1979, Zarraga, Hill & Leighton 2000; Singh & Nott 2003; Couturier, Boyer, Pouliquen & Guazzelli
2011; Dai, Bertevas & Tanner 2013; Dbouk, Lobry & Lemaire 2013; Gamonpilas, Morris & Denn 2016
Sierou & Brady 2002; Gallier, Lemaire, Peters & Lobry 2014; Gallier, Lemaire, Lobry & Peters 2016 22/78
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Pair interaction between particles under simple shear

Surface roughness or repulsive force:
— irreversible and asymmetric collisions
Arp & Mason J. Colloid Interface Sci. 1977; Davis PoF 1992
— non-isotropic normal stresses
Brady & Morris JFM 1997; Wilson JFM 2005
Breakdown of fore-aft symmetry (depletion in exgegsioqaé qua




(a) Cone-and-plate rotational rheometer. Ny; (b) Parallel-plate rotational rheometer: Ny — Na; (c) Parallel-plate

«O

rheometer with differential pressure transducers fitted flush against the lower plate surface: Ny + Np /2 and

Ny 4+ Np; (d) Weissenberg, or rotating rod, flow: Np + Ny /2; (e) Tilted-trough flow: Ny

3

4« F

24/78
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Effective fluid Two-phase flow Frictional approach Microscopic origin Jamming Complex suspensions
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Non-Newtonian behavior: normal stresses
Evidence of these normal stress differences
Free-surface deflection in rotating-rod and tilted-trough flows
Rotating-rod flow: anti-Weissenberg or rod Tilted-trough flow: bulging of the free
dipping effect surface
— measurement of Ny + Nj/2 — measurement of N
Boyer, Pouliquen & Guazzelli JFM 2011 Couturier, Boyer, Pouliquen & Guazzelli JFM 2011

Normal stress differences can be described as a tension in the vortex line!

Hinch JFM Focus in Fluids 2011
25/78
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@ First normal stress coefficient g (¢b) small but sign elusive: negative, positive, or null!
@ Second normal stress coefficient ap(¢) negative and magnitude increases with increasing ¢

@ Simulations show importance of friction and effect of confinement /walls
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@ N, large and negative because of lack of serious repulsion in the vorticity direction (most of the repulsive
collisions between spheres happen in the plane of shear)
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@ N small because the cd;llisions happen fairly equally in the flow and the flow-gra

0.0 0.1 0.2

0.4 0.5 0.6

nt directions. However,

the flow-induced microstructure of the frictional spheres can explain the sign of Np: (i) in the bulk, the

deficit in hydrodynamic interactions in the extensional region leads to a negative sign and (i) near a waII
the particle layering results in a decrease of contact stresses (enhanced by fnctlon) and thus pos|
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The suspension as a single effective fluid
Suspension viscosity

Non-Newtonian behavior: normal stresses

(@ Beyond the single-fluid view: two-phase flow
o Particle pressure

o Two-phase flow: shear-induced migration
3) An alternative frictional approach

4) Microscopic origin of the rheology
Microstructure

[rreversibility — role of contacts
5) Approaching jamming
Origin of the jamming transition
Influence of particle roughness and shape
6) Towards more complex suspensions
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shearing flows; (c) Submarine avalanches forced by the fluid shear stress

Examples of two-phase suspension flows: (a) Shear-induced migration of neutrally-buoyant spheres in a
pressure-driven Poiseuille flow in a tube; (b) Erosion of sedimented particles under the action of viscous fluid

40> «F»r «
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In a sheared suspension of particles, the collisions between the particles and between the particles and the walls

creates a force against the wall. This leads to a ‘particle pressure’, i.e. a pressure coming for the particulate phase.

Since the total pressure created by suspension mixture (particles plus fluid) is constant because of the 20/78
incompressibility of the suspension, this ‘particle pressure’ is balanced by a prefsté]re}comgg}frc:n@h}e fI{uz;Rhase_= Hac




Effective fluid Two-phase flow Frictional approach Microscopic origin Jamming Complex suspensions
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Particle pressure

Analogy with osmotic pressure

(a)

]

T

(a) Osmotic U tube: The solution is separated from the pure solvent (or a lower concentration solution) by a

semi-permeable membrane permitting the flow of the solvent but restricting the solute to the solution side. Osmotic

pressure is associated with the solvent flow into the solution and is measured by a reduced pressure in the solvent

(b) Analogical experiment using a Couette device: When the suspension is sheared, the liquid is sucked from the

tube through the grid. The liquid suction pressure is a way of evidencing and measuring the particle pressure 30/78
Deboeuf, Gauthier, Martin, Yurkovetsky & Morris PRL 2009

Elisabeth Guazzelli Université de Paris, CNRS
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direction)

(a) Grid pressure measurement; (b) Pore pressure measurement; Viscous resuspension: Measurement can be
conducted (c) in the plane of shear or (d) in the plane perpendicular to the plane of shear (i.e.

in the vorticity

40> «F»r «
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6{ < Boyer et al. 2011 PS spheres
D> Boyer et al. 2011 PMMA spheres
) Dagois-Boby et al. 2015 PS spheres
[ Dbouk et al. 2013

5] O Galler et al. 2014 (1, = 05, only contact)

— = Comelation Boyer et al. 2011 (¢, = 0.585)
—— Correlation Morris and Boulay 1999 (6 = 0.585)
— - Corelation Morris and Boulay 1999 (¢, = 0.68)
4 Q  Garland et al. 2013 (d = 40 pm)

I
I
—— Correlation Zarraga et al. 2000 '
|
!
Q  Garland et al. 2013 (d = 140 yim) "

Particle pressure in the gradient direction

_ng = "7n,277f|'.Y|
(independent of the sign of the shear

rate)

Same divergence as 75(¢)

Q np,2/ms — constant value (& 3.3, i.e.
[ ~ 0.3) when ¢ — Gc( 0.58 — 0.59)

Q npo/ms = Owheng — 0 . mpo — 0
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Particle pressure

Particle normal stresses

General tensorial form

77n,1(¢) 0 0
¢l 0 7n,2(¢) 0
0 0 7n,3(4)

Simplified form (similar ¢-dependence in all the directions) (Morris & Boulay JoR 1999)

1 0 0
—n(@)nel¥l| 0 A2 O
0 0 A3

with o
mie) = (252
with kK = 0.75, A2 &~ 0.8, and A3 = 0.5 (Morris & Boulay JoR 1999)
with K &~ 1, A2 = 0.95, and A3 = 0.6 (Boyer, Guazzelli & Pouliquen PRL 2011)

33/78
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0 Phyk= 055
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Particle migration from regions of high to low shear rate
Karnis, Goldsmith & Mason J. Colloid Interface Sci. 1966, Leighton & Acrivos JFM 1986 ... 34/78
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Snook, Butler & Guazzelli JFM 2016

Particle migration toward the center of the pipe
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Effective fluid Two-phase flow Frictional approach Microscopic origin Jamming Complex suspensions
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Two-phase flow: shear-induced migration
Two-phase modeling of suspensions

Continuum two-phase modeling

Q to assume that the interstitial fluid and the particles are two intertwined
continuous phases

@ to derive the governing equations that describe the system in an average sense
for each phase
Different ways of performing the averaging process

@ local space averaging over regions smaller than the macroscopic length scale but
larger than the particle size

O ensemble averaging at each point of space over ‘macroscopically equivalent’
systems
Averaged equations
O for the two phases and for the whole suspension but only two sets needed
@ closure problem: need for some constitutive relations

see e.g. Jackson Chem. Engng Sci 1997, Nott, Guazzelli & Pouliquen PoF 2011
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Two-phase flow: shear-induced migration

The suspension balance model: migration equation

Elisabeth Guazzelli

Balance equations for the particle phase

%Jrv(w’):o

h
Vol +n(f")], .+ oo — Pr)E =0
with

n(fh>5rag = 72% %(u" —U) with f(¢)=(1— ¢)" Richardson & Zaki 1954
Incompressibility of the suspension

vV-Uu=0
with volume average velocity: U = ¢ uP + (1 — ¢) uf

Migration equation for neutrally buoyant particles, p = p, = pr

8¢ 247
—~ 44U - Vép=-V 0P —U)=—-"V-[f(¢)V - "]
at 9n

Nott & Brady JFM 1994; Morris & Boulay JoR 1999; Lhuillier PoF 2009; Nott, Guazzelli & Pouliquen PoF 2011
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oQ)O %%% e om
O% % Steady fully developed flow

Q Particle pressure constant across the channel

w OOOOOOQ’.% 9oy _ Blm2(9) [1C) _

o) (0¢8] xp Axp
% @ Where the shear rate is low, the concentration is
a high and vice versa and the particles must have
migrated to the center 3078

Nott & Brady JFM 1994 «Or < Fr o«
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Agreement at large ¢ but some discrepancies at smaller ¢ and for the dynamlcs 40/78
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The suspension as a single effective fluid
Suspension viscosity

Non-Newtonian behavior: normal stresses

2) Beyond the single-fluid view: two-phase flow
Particle pressure

Two-phase flow: shear-induced migration
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Influence of particle roughness and shape
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Examples of gravity-driven flows of suspensions of negatively-buoyant particles. Flows of immersed heavy particles

(a) down an inclined plane and (b) in a tumbler. In both cases, the driving force is gravity; it controls the level of
stress experienced by the particle phase whereas the volume fraction is free to adjust to the flow condition

42/78
Ay




Effective fluid Two-phase flow Frictional approach Microscopic origin Jamming Complex suspensions
(e} (e]e] 00®00000 o o (e]e)
000000000000000000 000000 0000

00000 0000000 0000000 000000000

Granular rheology

Friction and dilatancy laws in the granular-liquid regime

Inertial number

P

v/ P/pp

Pressure on the top plate P and shear rate
4 imposed:

/P (1)
¢ = o)

The shear stress is proportional to the
pressure, with the effective friction

coefficient v and the volume fraction ¢
GDR MiDi 2004; da Cruz, Emam, Prochnow, Roux & el f . £/
Chevoir 2005; Lois, Lemaitre & Carlson 2005 eing functions o i 5
Forterre & Pouliquen ARFM 2008 g

Elisabeth Guazzelli Université de Paris, CNRS
Rheology of granular suspensions
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Volume-imposed versus pressure-imposed rheometry

LA A A ?J- b -\ .e
(}/ Q N

o chb fox
@(@% @Qb%)

Pressure-imposed rheometry:
¢: T, :Ya P(E 70’52): nfe

o /P = p(J)

0 ¢=0(J)

J = n¢y/ P viscous dimensionless shear rate

Volume-imposed rheometry: P, 1,7, ¢, nf

0 7 =ns(¢) nry
O P =mnn(¢)ney
Viscous scaling of the stresses

Elisabeth Guazzelli Université de Paris, CNRS
Rheology of granular suspensions
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Dimensionless shear rate
Inertial dimensionless number Viscous dimensionless number
I'=dy/\/P/pp J=nsy/P
Ratio between two time scales Ratio between two time scales
@ macroscopic time scale linked to the @ macroscopic time scale linked to the
mean deformation: 1/7 mean deformation: 1/
@ inertial microscopic time of (@ viscous microscopic time of
rearrangements: d/+/P/pp rearrangements: 7¢/P
GDR MiDi 2004; da Cruz, Emam, Prochnow, Roux & Cassar, Nicolas & Pouliquen 2005; Boyer, Guazzelli &
Chevoir 2005; Lois, Lemaitre & Carlson 2005 Pouliquen 2011
45/78
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Precision scale ’j/TLmslnim Stage

from a Viewpoint on Unifying Suspension and Granular ° -I;]OP pohrc?usbplate enabli_nlg fluid to flow
Rheology Boyer, Guazzelli & Pouliquen PRL 2011 through it but not particles
Physics 2011 (APS/Alan Stonebraker)

@  Simultaneous measurements of ¢, ¥, T,
P(= —052 here)
@ Measurements of the particle pressure P

@ Examination of the rheology close to the jamming transition

Boyer, Guazzelli & Pouliquen PRL 2011

46/78
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p(l) saturates at large / and ¢c — ¢ o< / p(J) still increases at large J and ¢ — ¢ o< J1/2
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data (inclined-plane and annular shear geometry) Boyer, Guazzelli & Pouliquen PRL 2011 47/18
collected in Forterre & Pouliquen ARFM 2008 (O B> «=r <> Ha
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using ns = p/Jand np, =1/J
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The pair distribution function provides the likelihood of finding a particle at position r
with respect to a reference particle, relative to the likelihood of finding a particle at
any position within the suspension without knowledge of any particle position
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Microstructure

Measuring the pair distribution function

Thermostated box

Rotor

60 mm

Optical filter
&7 Camera

@ ®)

Density and index-matched suspension sheared in a wide-gap Couette rheometer

First experimental attempt: Parsi & Gadala-Maria JoR 1987
Recent experimental determinations: Blanc, Lemaire, Meunier & Peters JoR 2013

] = =
Elisabeth Guazzelli

Université de Paris, CNRS
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Microstructure

Experimental pair distribution

Qo

o =5%

Elisabeth Guazzelli

Rheology of granular suspensions

Microscopic origin Jamming Complex suspensions
o o 00
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function in the shear plane

For ¢ = 0.05:

o Fore-aft asymmetry due to particle
surface roughness

o depleted area + tail-like high particle
concentration zone in the recession
quadrant

For all ¢: strong pair correlation zone near
p/a =2 in the compressional quadrant +
depleted zone in the extensional quadrant

As the particle concentration increases, the
depleted zone that is close to the velocity
direction for ¢ = 0.05 rotates toward the
dilatation axis direction

For ¢ > 0.45: secondary depletion zone in the

compressional quadrant + high pair
correlation zone near the mean flow direction

Blanc, Lemaire, Meunier & Peters JoR 2013 52/78
o & = = Ha
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$=10%

Numerical pair distribution function in the shear plane

=20%

roughness effects

Same qualitative features with Stokesian Dynamics
particles have been tuned to reproduce the particle

simulations in where repulsive forces between

Blanc, Lemaire, Meunier & Peters JoR 2013
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Microstructure

Microstructure

Pair distribution of suspensions of non-Brownian rough spheres

@ Fore-and-aft asymmetric with a strong pair correlation zone at contact in the
approach side of the reference particle and a depletion of pairs in the receding
side

@ At low particle volume fraction, the depleted area is close to the velocity
direction and is tilted as the particle concentration is increased

@ At very high concentrations, new features: a secondary depleted area in the
compressional quadrant and a probability peak in the velocity direction

Microstructure and non-Newtonian rheology

The essential point is that the microstructure loses isotropy, establishing a preferred
direction for finding the near-contact pairs that control the observed rheology of
concentrated suspensions. This anisotropy leads to normal stress differences in shear
flow and the shear-induced migration phenomenon.

54/78
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Microstructure

Evidence of a shear-induced anisotropic microstructure

0 1 ;2 3
v

Gadala-Maria & Acrivos JoR 1980

Blanc, Peters & Lemaire JoR 2011

Elisabeth Guazzelli

Rheology of granular suspensions

Steady shearing of a suspension

The particles organize into a
microstructure where the contacts are
predominantly oriented along the
compressional directions

Shear reversal (at large ¢)

The viscosity exhibits a sudden drop,
corresponding to the loss of the
contacts, and then increases to return
to its steady value as the contact
arrangement slowly rebuilds in the new
compressional zones

Microscopic origin Jamming Complex suspensions
o oo

00000e 0000

0000000 000000000
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O

Fi. 8. Polar diagram of the trajectories listed in Table V for flow reversals 0 to 8. Also shown are the
angles ¢:* — 90° at which the flow was reversed and when the spheres were close together. Initially the
spheres moved along closed trajectories (C = —0.33) which did not change significantly until after the
hird flow reversal (when C increased to —0.23). After the fourth reversal the trajctories became open
(C = +001) and on the fifth her at ¢, = 0, 180° result-
ing n a further increase in C, which became effectively constant afer the ixth reversal when C =~ 0.27.
‘The trajectories were calculated from (1] and [2], knowing B and C obtained experimentally from
analysis of cinefilms taken along the # and 1 axes.

Arp & Masson J. Colloid Interface Sci. 1977
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0.5

Pair distribution function

Blanc, Peters & Lemaire PRL 2011

(b)

)

Pair distribution function computed from pair trajectories of
rough spheres

«0)» «F»
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First cycle

0 4

1 2 4
Aceumulated strain, y

Irreversibility amplitude increases with increasing roughness
Pham, Metzger & Butler PoF 2015
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Nature Physics 2008

Oscillatory Couette flow with a particle suspension

Pine, Gollub, Brady & Leshansky Nature 2005; Bricker & Butler JoR 2006,2007; Corté, Chaikin, Gollub & Pine
Can. J. Chem. 1978

and also: Memory impairment in flowing suspensions. Okagawa & Mason Science 1973; Okagawa, Ennis & Mason

Any small source of irreversibility in a physical system (e.g., surface roughness or
repulsive forces, particles deformability, or inertia) can cause a loss of memory

«0)» «F»
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Particles observed stroboscopically
Strain amplitude = 1.0 (left) and 2.5 (right)

Pine, Gollub, Brady & Leshansky Nature 2005




Mean square displacement
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Figure 1/ Particls a, Particle displ:

in the x—z plane after one full cycle in a sheared suspension above the onset
of irreversibility, amplified by a factor of 6 for clarity (volume fraction

¢ = 0.30, strain amplitude v, = 2). b, Some of the chaotic particle
trajectories. ¢, Mean square particle displacements (Ax?) and (Az?) after n
full cycles as a function of the accumulated strain y = 4yon for ¢ = 0.40 and
= 2.0. The filled and open squares are the mean square displacements (x*)
and (z%), respectively, obtained by averaging over particle trajectories such as
those displayed in b; lhe solid lmes through the data are least squares fits
from which the diffusivities are d ined. The fl ions are
anisotropic, growing more quickly along the flow direction (x) than along
the axial direction (z). Experimental details: the diameter of the inner

Accumulated strain

cylinder of the Couette cell is 50 mm and the gap between the (concentric)
cylinders is 2.5 mm; thus, a strain of 1 corresponds to an an;

displacement of the inner cylinder of 5.7°. The PMMA particles have surface
irregularities of only 2 nm, as measured by AFM. The fluid viscosity is 3 Pass,
about 3,000 times that of water. The suspension floats on a layer of mercury
to eliminate end effects. The fractional accuracy of the phase at which the
camera and frame grabber are triggered is typically better than 0.001, but the
final results are not very sensitive to this quantity. We sample particle
positions near the instant of maximum particle velocity. The particle
displacements in the x and z directions after each full cycls denoted by Ax
and Az, respectively.

Pine, Gollub, Brady & Leshansky Nature 2005
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Irreversibility — role of contacts

Threshold of irreversibility in an oscillatory shearing flow

(@) (0) ()

0

¢:¢U

i
# active particles
= Strain amplitude ¥

# active particles

0 0 0 b
N Ve N %o
# cycles Strain amplitude ~° volume fraction ¢
Dynamical phase transition between a fluctuating irreversible steady state (wherein a
finite fraction of active particles experience random diffusive motions) and an
absorbing reversible state (wherein the particles avoid each other)

Pine, Gollub, Brady & Leshansky Nature 2005; Corté, Chaikin, Gollub & Pine Nat. Phys. 200§ 62/78
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differences as a function of the volume fraction, ¢

Gallier, Lemaire, Peters & Lobry JFM 2014
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Relative contribution of the frictional contact (red square) and of the hydrodynamic

(blue circle) stresses to the (a) viscosity, and the (b) first and (b) second normal stress
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Origin of the jamming transition

Extended network of contacts close to jamming

Perturbations around the jammed state to predict the singular behaviors

Illustration of solid destabilization: several weak contacts (red dashed lines) are opened. This induces a space of
extended, disordered floppy modes, one of which is shown (arrows). Line thickness indicates force magnitude in the
original, stable solid.

DeGiuli, Diiring, Lerner & Wyart PRE 2015
65/78
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Origin of the jamming transition

Amplification of the rheological properties caused by the
addition of particles

Local shear rate: Yjpcar

@ linked to the magnitude of shear rate
experienced by the interstitial fluid
between the particles (e.g. the standard
deviation of the modulus of the shear
rate)

@ larger than the macroscopic shear rate, 7,
imposed to the whole suspension mixture

Amplification factor: the lever function, £(¢), depending solely on ¢

YViocal = L(d’) ol

Lever function diverges when approaching ¢. and is directly related to the density of
floppy modes, i.e. related to the ‘extended’ open contacts leading to a spatially
extended response in the system 66/78

Elisabeth Guazzelli Université de Paris, CNRS
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Origin of the jamming transition

Amplification of the viscosity related to the lever function

Homogenization approach

Energy dissipated per unit of time and volume, P

O whole suspension mixture: P = 1s(¢) nry?

@ assuming that the dissipation mainly occurs in the interstitial fluid and not at
the contact between the particles, exact in the limit of frictionless particles:

P= (1 - ¢)77f"Y,2063,

Relation between the relative shear viscosity and the lever function

(1 — (‘b)ﬁ.’foca/ ; 112
C= et — (1 - g)2(0)

ns(p) =
Scaling description of rheological properties near jamming
O For frictionless particles: ns(¢) ~ (¢c — ¢) 283
@ For frictional particles: energy also dissipated by sliding at frictional contacts

Chateau, Ovarlez & Trung JoR 2008; DeGiuli, Diiring, Lerner, & -Wyart-RRE 2015
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Influence of particle roughness and shape

Frictional approach

Microscopic origin Jamming Complex suspensions
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Influence of interparticle friction on rheological properties

Inertial granular flows

1071

Frictionless Rolling

Frictional
Sliding

1
1

.
10° 10

= =il
10 10 Ly
In the frictionless and rolling regimes, most energy is
dissipated by inelastic collisions, while in the frictional
sliding regime energy dissipation is dominated by sliding
DeGiuli, McElwaine & Wyart PRE 2016

Viscous suspension flows

1071

102 Frictionless Rolling
J 103 P — =

104 2% Bictional "

_-n rictional "
10—5 e Sliding '_
1070 e
1072 107! 10° 10"
Hp

In the frictionless and rolling regimes, the dominant source
of dissipation is viscous drag, whereas in the frictional
sliding regime, dissipation is dominated by sliding friction
Trulsson, DeGiuli & Wyart PRE 2017

Impact of interparticle friction, and in particular of surface roughness, on the
rheological properties of these particulate systems close to the jamming transition

Elisabeth Guazzelli

Rheology of granular suspensions
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Slightly and highly roughened spheres

Slightly roughened (SR) and highly roughened (HR) spheres
Ry? (pum) Rq® (um) Rz € (1im) st

SR 0.287 4 0.008 0.387 £ 0.008 2.073 £ 0.008 0.23 + 0.03

HR 1.896 + 0.008 2.410 £ 0.008 9.808 £ 0.008 0.37 £ 0.03

a

average roughness

bstandard deviation
Cten—point mean roughness

rf
0.004 =+ 0.001
0.007 =+ 0.001

Objecif 7100:X1000}

d (pm)
580 + 20
540 + 20
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Influence of particle roughness and shape

Rheological data for the immersed and

Jamming Complex suspensions

e]e]
0000
00@000000

dry spheres

— MY (; — d~. ] Pe
p and ¢ versus J = “ET (immersed case) and | = d¥,/ %% (dry case)
(a) (b)o.6o
25 Tmmersed SR 7
O  Immersed HR /
20{ ©O DrySR / 0.551
o O Dry HR T
< ﬁ
H 050
0.454
0.40 T

104

10 10-2 10!
J, 1

Q 1 unchanged while ¢ shifted toward lower values of ¢ when increasing particle roughness

@ Critical values for the effective friction coefficient and the volume fra

ction:

O pe & 0.36 similar in the immersed and dry cases and not affected by particle roughness
O ¢ similar in the immersed and dry cases but decreasing with increasing roughness:

$3R ~ 0.585 whereas ¢! ~ 0.564

Elisabeth Guazzelli

Rheology of granular suspensions
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w=T7/P=mns/mn
J=mey/P=1/nn

715(8) = 1(8)/4(@) = u(d)nn(¢)
n(8) = 1/4(8)

Complete collapse of all the data for
both the SR and HR spheres

0.1 0.2
(6 = 0)/de
0.00 0.05 0.10 0.15 i 0.00 0.05 0.10
J J
Tapia, Pouliquen & Guazzelli PRF 2019

wand ¢ o< VJ

ns and n, diverge as (1 — ¢/bc) 2

> «Fr <«
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Influence of particle roughness and shape

[e]
000000
0000000

Rheology of rigid fiber suspensions

The different regimes of fiber suspensions

Jamming Complex suspensions

e]e]
0000
000080000

The dilute (n < 1/L3), semi-dilute (1/L3 < n < 1/L2d), concentrated (n > 1/L%d)

regimes and ordered nematic state (n > 1/L%d)

/ //4@/
/ /7/}

I/
%ﬁi

Rheology of viscous Newtonian fluids containing rigid fibers relatively unexplored

@ Yield stresses and nonlinear scaling of T with 5 (shear-thinning)
Ganani & Powell 1985; Powel 1991

Q
Bibbé 1985; Bounoua, Lemaire, Férec, Ausias & Kuzhir 2016

Elisabeth Guazzelli

Rheology of granular suspensions

Rheological studies at relatively small ¢ (¢ < 0.17 for A = 17 — 18; ¢ < 0.23 for A = 9)

72/78
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Influence of particle roughness and shape

¢- and P-imposed rheometry of dense fiber suspensions

W

Rigid fibers with different ‘
aspect ratios

100-10° m,&;&;;‘f%%

o g A <

70(Pa)

iz Syl A Viscous scaling: 7 and P linear in 4
g vy
((|I|)) E 164'35f00'48 But non-zero yield-stresses, 79 and Py, at ¥ =0
E:Ug 8 ;‘21 i 8‘31 Q 79 and Py increase with ¢, more sharply for higher A

Q Origin of yield stresses still remains unknown!
. . . . /
Adhesive forces? Transient jamming? 73/78

Elisabeth Guazzelli Université de Paris, CNRS
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Q 7 and 7, increase with ¢ and
diverge at ¢c(A) with shift
towards lower values of ¢ with
increasing A

Q@ ¢ decreasing function of J
with shift towards lower values
of ¢ with increasing A

Q@ Good collapse of all data for
w(J)

1 independent of A

O Data for batches (11) and (111),
having similar A, collapse onto
the same curve

Tapia, Shaikh, Butler, Pouliquen &
Guazzelli JFM 2017
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(b)

O  Experiments of Rahli, Tadrist & Blanc 1999 (M) on the dry packing of rigid fibers
O Simulations of Williams & Philipse 2003 () for the maximum random packing of spherocylinders
O Data (%) obtained by Boyer, Guazzelli & Pouliquen 2011 for suspensions of spheres (A = 1)
091 (3)
0.8
. S

*
0.
0.0 25 50 7.5 10.012.515.0 17.5 0.0 25 50 7.5 10.0 125 15.0 17.£
A A
Q@ ¢ decreases with increasing A such as for dry packing; organized structure for A = 157
Q e = 0.47 independent of A and larger than value for spheres (%)
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0.7 08
6/9.

Batch (I): A= 14508

Good collapse of all the data
by rescaling by ¢c(A)

Q 75 and 7, diverge as

~ (¢c — ¢)_1

Tapia, Shaikh, Butler, Pouliquen &
Guazzelli JFM 2017
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Towards more complex suspensions

@ While hydrodynamic interactions between the particles are important in
the dilute regime, they become of lesser significance when the
concentration is increased, and direct particle contacts become dominant
in the rheological response of concentrated suspensions.

@ More open problems

Non-spherical particles (e.g. platelets . ..)
Colloidal interactions and nonlinear rheology: Shear-thickening (wyart
& Cates PRL 2014, Mari, Seto, Morris & Denn, JoR 2014)

o Non-Newtonian flUIdS (Chateau, Ovarlez & Trung JoR 2008, Dagois-Bohy, Hormozi,
Guazzelli & Pouliquen JFM 2015)

o Inertial suspensions (Trulsson, Andreotti & Claudin PRL 2012, DeGiuli, Diiring, Lerner &
Wyart PRE 2015, Amarsid, Delenne, Mutabaruka, Monerie, Perales & Radjai PRE 2017)
Suspensions of polydisperse, deformable, active . .. particles
Suspensions at interfaces (Zhao, Oléron, Pelosse, Limat, Guazzelli & Roché PRR 2020) 1878
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