Derivation of sedimentation models as a mean-field limit and analysis of the transport-Stokes model

Collective behavior of particles in fluids

Amina MECHERBET

J-PRG

A. Mecherbet (Université de Paris, IMJ-PRG)

Outline

On the sedimentation of a falling droplet

- Global existence and uniqueness result for (TS)
- Evolution of the surface of the droplet
- Investigation of the spherical shape case

Image: A match the second s

- (E) (E)

Microscopic model for inertialess sedimentation

n particles B_i centered in x_i with orientation θ_i and radius $R = \frac{r_0}{n}$, $1 \le i \le n$

$$\begin{cases} -\Delta u + \nabla p = 0, \operatorname{div}(u) = 0, & \text{on } \mathbb{R}^3 \setminus \bigcup_{i=1}^n \overline{B}_i \\ u = u_i + \omega_i \times (x - x_i), & \text{on } B_i, 1 \leq i \leq n, \\ \lim_{|x| \to \infty} |u(x)| = 0. \end{cases}$$

$$\int_{\partial B_i} \Sigma(u,p) \nu d\sigma(x) + \frac{4}{3} \pi r^3 (\rho_p - \rho_f) g = 0, \quad \int_{\partial B_i} (x - x_i) \times [\Sigma(u,p) \nu] d\sigma(x) = 0,$$

$$\dot{\mathbf{x}}_i = \mathbf{u}_i, \quad \dot{\mathbf{\theta}}_i = \omega_i.$$

イロト イポト イヨト イヨト

System of interacting spherical particles

As long as $d_{\min} \ge \frac{c}{n}$ and (roughly) $r_0 = Rn$ small enough we have

$$\dot{x}_i = \kappa g + \frac{6\pi r_0}{n} \sum_{j \neq i} \Phi(x_i - x_j) \kappa g + O(d_{\min})$$

•
$$\Phi(x) = \frac{1}{8\pi} \left(\frac{l}{|x|} + \frac{x \otimes x}{|x|^3} \right)$$
 the Oseen tensor

• $\kappa g = \frac{2}{9}R^2(\rho_p - \rho_f)g$ the velocity fall of one single spherical particle in a Stokes flow

 P. E. Jabin and F. Otto (2004). R. M. Höfer (2018). A. M (2019). R. M. Höfer and R. Schubert (2020).

イロト 不得 トイヨト イヨト

Propagation of the infinite Wasserstein distance and the minimal inter-particle distance

$$\mathcal{K}^{n}\rho^{n}(x) = 6\pi r_{0} \int_{\mathbb{R}^{3}} \chi \Phi(x-y)\kappa g\rho^{n}(dy), \quad \mathcal{K}\rho(x) = 6\pi r_{0} \int_{\mathbb{R}^{3}} \Phi(x-y)\kappa g\rho(dy)$$

with $\rho^{n} = \frac{1}{n} \sum_{i} \delta_{x_{i}}$, formally we have

$$\frac{d}{dt}W_{\infty}(\rho^{n},\rho) \lesssim \|\mathcal{K}^{n}\rho^{n} - \mathcal{K}\rho\|_{\infty}, \quad \frac{d}{dt}d_{\min} \lesssim d_{\min}\|\nabla\mathcal{K}^{n}\rho^{n}\|_{\infty}$$
$$\|\mathcal{K}^{n}\rho^{n} - \mathcal{K}\rho\|_{\infty} \lesssim W_{\infty}\left(1 + W_{\infty} + \frac{W_{\infty}^{2}}{d_{\min}}\right), \quad \|\nabla\mathcal{K}^{n}\rho^{n}\|_{\infty} \lesssim \left(1 + \frac{W_{\infty}^{3}}{d_{\min}^{2}}\right)$$

Cluster configuration

As a first step for rigorous justification of polymeric suspensions

n pairs of spheres centered in x_1^i, x_2^i

 $|x_1^i - x_2^i| \sim R, 1 \le i \le n.$

 $x_{+}^{i} := rac{x_{+}^{i} + x_{2}^{i}}{2}$ center of the *i*th cluster $\xi^{i} := rac{x_{1}^{i} - x_{2}^{i}}{2B}$ orientation of the *i*th cluster

イロト イヨト イヨト イヨト

C. Le Bris, T. Lelièvre. Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics 2011.

System of interacting clusters

As long as $d_{\min} \geq \frac{c}{\sqrt{n}}$ and r_0 small enough we have

$$\dot{x}_{+}^{i} = (\mathbb{A}(\xi_{i}))^{-1} \kappa g + \frac{6\pi r_{0}}{n} \sum_{j \neq i} \Phi(x_{+}^{i} - x_{+}^{j}) \kappa g + O(d_{\min})$$
$$\dot{\xi}_{i} = \left(\frac{6\pi r_{0}}{n} \sum_{j \neq i} \nabla \Phi(x_{+}^{i} - x_{+}^{j}) \kappa g\right) \cdot \xi_{i} + O(d_{\min})$$

- (A(ξ_i))⁻¹ κg the mean velocity fall of one pair of identical spheres in a Stokes flow
- D.J. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two unequal spheres in low-Reynolds-number flow. J. Fluid Mech. 139 (1984) 261–290.
- A. M. A model for suspension of clusters of particle pairs. 2019. hal-02171615. To appear in ESAIM: Mathematical Modelling and Numerical Analysis.

・ロン ・四 ・ ・ ヨ ・ ・ 日 ・

System of interacting axisymmetric particles

In the case where the shape has 3 axes of symmetry the system obtained is

$$\begin{aligned} \dot{x}_i &\sim \quad \left(\mathcal{M}_1(\xi_i)\right) \kappa g + \frac{6\pi r_0}{n} \sum_{j \neq i} \Phi(x^i_+ - x^j_+) \kappa g \\ \dot{\xi}_i &\sim \quad \mathcal{M}_2(\xi_i) \left(\frac{6\pi r_0}{n} \sum_{j \neq i} \nabla \Phi(x^i_+ - x^j_+) \kappa g \cdot \xi_i \right) \end{aligned}$$

- $(\mathcal{M}_1(\xi_i)) \kappa g$ the velocity fall of one single particle in a Stokes flow
- (x_i, ξ_i) the center and orientation of the *i*th particle

Control of the minimal distance

Cluster configuration

Proposition

For all $1 \le i \le N$ and $j \ne i$ we have

$$\begin{aligned} &|\dot{\xi}_i| \lesssim \|\nabla \mathcal{K}^N \rho^N\|_{\infty} |\xi_i| + O(d_{\min}), \\ &|\dot{x}_+^i - \dot{x}_+^j| \lesssim \|\nabla \mathcal{K}^N \rho^N\|_{\infty} |x_+^i - x_+^j| + |\xi_i - \xi_j| + O(d_{\min}), \\ &|\dot{\xi}_i - \dot{\xi}_j| \lesssim \|\nabla \mathcal{K}^N \rho^N\|_{\infty} |\xi_i - \xi_j| + \|\nabla^2 \mathcal{K}^N \rho^N\|_{\infty} |x_+^i - x_+^j| + O(d_{\min}). \end{aligned}$$

Proposition

There exists a positive constant C > 0 independent of N such that:

$$\|\mathcal{K}^{N}\rho^{N}\|_{W^{2,\infty}(\mathbb{R}^{3})} \leq C\left(\frac{W^{3}_{\infty}}{d_{\min}} + \frac{W^{3}_{\infty}}{d^{2}_{\min}} + \frac{W^{3}_{\infty}}{d^{3}_{\min}}\right)\|\rho\|_{W^{1,\infty}(\mathbb{R}^{3})\cap W^{1,1}(\mathbb{R}^{3})}.$$

Limitation of the mean-field approach

Cluster configuration

Formally

$$\frac{d}{dt}W_{\infty}(\rho^{N}(t,\cdot),\rho(t,\cdot)) \lesssim \|\mathcal{K}^{N}\rho^{N} - \mathcal{K}\rho\|_{L^{\infty}} + \|\nabla\mathcal{K}^{N}\rho^{N} - \nabla\mathcal{K}\rho\|_{L^{\infty}}$$

$$\begin{split} \|\mathcal{K}^{N}\rho^{N} - \mathcal{K}\rho\|_{L^{\infty}} &\lesssim & \|\rho\|_{\infty} W_{\infty}(\rho^{N},\rho) \left(1 + \frac{W_{\infty}(\rho^{N},\rho)^{2}}{d_{\min}}\right) \\ \|\nabla\mathcal{K}^{N}\rho^{N} - \nabla\mathcal{K}\rho\|_{L^{\infty}} &\lesssim & \|\rho\|_{\infty} W_{\infty}(\rho^{N},\rho) \left(|\log W_{\infty}(\rho^{N},\rho)| \right. \\ &+ & \left.\frac{W_{\infty}(\rho^{N},\rho)^{2}}{d_{\min}^{2}} + 1\right) \end{split}$$

イロト イヨト イヨト イヨト

Outline

On the sedimentation of a falling droplet

- Global existence and uniqueness result for (TS)
- Evolution of the surface of the droplet
- Investigation of the spherical shape case

A mesoscopic model for inertialess sedimentation

 $(t, x) \mapsto (u(t, x), p(t, x))$ the fluid velocity and pressure.

 $(t, x) \mapsto \rho(t, x)$ the (probability) density of the suspension.

$$\left\{\begin{array}{rrl} \partial_t \rho + \operatorname{div}((u + \kappa g)\rho) &=& 0\,, & \text{ on } \mathbb{R}^+ \times \mathbb{R}^3, \\ -\Delta u + \nabla \rho &=& 6\pi r_0 \kappa \rho g\,, & \text{ on } \mathbb{R}^+ \times \mathbb{R}^3, \\ \operatorname{div} u &=& 0\,, & \text{ on } \mathbb{R}^+ \times \mathbb{R}^3, \\ u &=& 0, & \text{ at infinity} \\ \rho(0, \cdot) &=& \rho_0\,, & \text{ on } \mathbb{R}^3. \end{array}\right.$$

(TS)

 $\kappa g = \frac{2}{9}r^2(\rho_p - \rho_f)g$ the velocity fall of one particle given by Stokes law.

 $6\pi r_0 \kappa g = n_3^4 \pi r^3 (\rho_p - \rho_f) g\rho := \lambda (\rho_p - \rho_f) g\rho$ the Brinkman force or the collective force applied by the suspension on the fluid where λ the volume fraction of the suspension.

Experimental and numerical behaviour of falling dispersed particles/droplets in a viscous fluid

Figure: Droplet breakup and torus formation¹

- G. K. BATCHELOR AND J. M. NITSCHE, Break-up of a falling drop containing dispersed particles, J. Fluid Mech. Volume 340, (10 June 1997)
- ¹ G. MACHU, W. MEILE, L. C. NITSCHE, AND U. SCHAFLINGER, Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations, J. Fluid Mech. Volume 447, (25 November 2001)
- B. METZGER, M. NICOLAS, AND É. GUAZZELLI, Falling clouds of particles in viscous fluids, J. Fluid Mech. Volume 580, (10 June 2007), pp. [283,301].

(I) < ((i) <

Comparison to the falling of a liquid viscous droplet in a lighter viscous fluid

Figure: Streamlines for liquid droplet showing internal circulation¹

Invariance of the spherical shape falling according to a translational velocity given by

$$V = rac{2}{9\mu}r^2(
ho_I -
ho)grac{\mu_I + \mu}{\mu_I + rac{2}{3}\mu},$$

 μ_{l}, ρ_{l} the viscosity and density of the interior liquid in the sphere.

- M. J. HADAMARD, Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquide visqueux, C. R. Acad. Sci. 152, (1911)
- ¹ J. HAPPEL AND H. BRENNER Low Reynolds number hydrodynamics. Figure 4-21.1. 1965
- W. RYBCZYNSKI, Über die fortschreitende bewegung einer flüssigen kugel in einem zähen medium, Bull. Acad. Sci. Cracovie, (1911)

Analysis of the TS model

Global existence and uniqueness result for regular initial densities can be found in the paper of R. M. Höfer.

Up to a change of variable, we consider the following equation in the following

$$\left\{ egin{array}{ll} \partial_t
ho + \operatorname{div}(
ho u) &= 0\,, & ext{on } \mathbb{R}^+ imes \mathbb{R}^3, \ -\Delta u +
abla p &= -
ho e_3\,, & ext{on } \mathbb{R}^+ imes \mathbb{R}^3, \ \operatorname{div} u &= 0\,, & ext{on } \mathbb{R}^+ imes \mathbb{R}^3, \ u &= 0, & ext{at infinity} \
ho(0, \cdot) &=
ho_0\,, & ext{on } \mathbb{R}^3. \end{array}
ight.$$

(1)

R. M. HÖFER 2018, R. M. HÖFER AND R. SCHUBERT 2020.

Outline

On the sedimentation of a falling droplet

• Global existence and uniqueness result for (TS)

- Evolution of the surface of the droplet
- Investigation of the spherical shape case

Image: Image:

Theorem (AM 20')

Let $\rho_0 \in L^{\infty}(\mathbb{R}^3)$ a probability measure with finite first moment. There exits a unique couple $(\rho, u) \in L^{\infty}(0, T; L^1(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3)) \times L^{\infty}(0, T; W^{1,\infty}(\mathbb{R}^3))$ satisfying the transport-Stokes equation (1) for all $T \ge 0$. Moreover, for all $s \in [0, T]$ there exists a unique characteristic flow $X(\cdot, s, \cdot) \in L^{\infty}(0, T, W^{1,\infty}(\mathbb{R}^3))$

$$\begin{cases} \partial_t X(t, s, x) = u(s, X(t, s, x)), & \forall t, s \in [0, T], \\ X(s, s, x) = x, & \forall s \in [0, T], \end{cases}$$

For all $s, t \in [0, T]$ the diffeomorphism $X(s, t, \cdot)$ is measure preserving and we have

$$\rho(t,\cdot)=X(t,0,\cdot)\#\rho_0.$$

Regularity of the velocity field

Proposition

Let $\eta \in L^{\infty}(\mathbb{R}^3) \cap L^1(\mathbb{R}^3)$, the unique u solution to the Stokes equation:

$$\begin{cases} -\Delta u + \nabla p &= -\eta e_3, \quad on \mathbb{R}^3 \\ \operatorname{div}(u) &= 0, \quad on \mathbb{R}^3, \\ u &= 0, \quad at \text{ infinity} \end{cases}$$

is given by $u = -\Phi \star \eta e_3$ with the Oseen tensor Φ

$$\Phi(x) = \frac{1}{8\pi} \left(\frac{\mathbb{I}_3}{|x|} + \frac{x \otimes x}{|x|^3} \right).$$

 $u \in W^{1,\infty}(\mathbb{R}^3)$ and there exists a positive constant independent of the data such that:

$$\|\boldsymbol{u}\|_{\infty}+\|\nabla\boldsymbol{u}\|_{\infty}\leq \boldsymbol{C}\|\boldsymbol{\eta}\|_{L^{1}\cap L^{\infty}}.$$

< ロト < 同ト < ヨト < ヨト

Stability estimates using the first Wasserstein distance

For any $\eta_1, \eta_2 \in L^1(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3)$ and $u_i = -\Phi \star \eta_i e_3$ we have

$$\int_{\mathbb{R}^3} |u_1(x) - u_2(x)| \rho(dx) \leq C(\|\eta_i\|_{L^1 \cap L^\infty}) W_1(\eta_1, \eta_2).$$

For any $u_i \in L^{\infty}(0, T; W^{1,\infty}(\mathbb{R}^3))$, i = 1, 2 and ρ_i the solution to the associated transport equation

$$egin{aligned} &\mathcal{W}_1(
ho_1(t),
ho_2(t))\ &\leq \left(\mathcal{W}_1(
ho_1(s),
ho_2(s))+\int_s^t\int_{\mathbb{R}^3}|u_2(au,x)-u_1(au,x)|\,
ho_1(au,x)dxd au
ight)e^{Q_2(t-s)}, \end{aligned}$$

where $Q_i := \|u_i\|_{L^{\infty}(0,T;W^{1,\infty})}$.

 M. HAURAY AND P. E. JABIN, Particle approximation of Vlasov equations with singular forces : propagation of chaos, Ann. Sci. Éc. Norm. Supér. (4), (2015).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

On the sedimentation of a falling droplet

- Global existence and uniqueness result for (TS)
- Evolution of the surface of the droplet
- Investigation of the spherical shape case

Derivation of an equation for the surface evolution

If $\rho_0 = \mathbf{1}_{B_0}$ then $\rho_t = \mathbf{1}_{B_t}$ where B_t is transported along the flow. Let consider

$$\partial B_0 = \left\{ r_0(\theta) \begin{pmatrix} \cos(\phi) \sin(\theta) \\ \sin(\phi) \sin(\theta) \\ \cos(\theta) \end{pmatrix}, (\theta, \phi) \in [0, \pi] \times [0, 2\pi] \right\},\$$

We set then $c(t) = (0, 0, c_3(t)) \in B_t$ the position at time *t* of a reference point such that c(0) = 0 and write $B_t = c(t) + \tilde{B}_t$ where

$$\partial \tilde{B}_t = \left\{ r(t,\theta) \begin{pmatrix} \cos(\phi)\sin(\theta) \\ \sin(\phi)\sin(\theta) \\ \cos(\theta) \end{pmatrix}, (\theta,\phi) \in [0,\pi] \times [0,2\pi] \right\}.$$

Derivation of the evolution equation for the surface droplet

$$\begin{cases} \partial_t r + A_1[r]\partial_\theta r &= A_2[r], \quad \text{on } \mathbb{R}^+ \times [0, \pi] \\ r(0, \cdot) &= r_0, \quad \text{on } [0, \pi] \end{cases}$$
(H)

In the case where the reference point $c = (0, 0, c_3)$ is transported along the flow *i.e.* $u(c) = \dot{c}$ we have $c = c[r] = (0, 0, c[r]_3)$ and

$$\begin{cases} \dot{c}[r]_{3}(t) = -\frac{1}{4} \int_{0}^{\pi} r^{2}(t,\bar{\theta}) \sin(\bar{\theta}) \left(1 - \frac{1}{2} \sin^{2}(\bar{\theta})\right) d\bar{\theta}, \\ c[r]_{3}(0) = 0, \end{cases}$$
(C)

Remark

The volume of the droplet is conserved in time

$$\int_0^{\pi} \partial_t r(t,\theta) r^2(t,\theta) \sin(\theta) d\theta = 0.$$

$$A_1[r] = \frac{1}{r} (\mathcal{U}[r] - \dot{c}) \cdot \partial_{\theta} e(\cdot, 0), \quad A_2[r] = (\mathcal{U}[r] - \dot{c}) \cdot e(\cdot, 0).$$

$$\mathcal{U}[r](\theta) = \int_{(0,\pi)\times(0,2\pi)} \int_0^{r(\bar{\theta})} \Phi(r(\theta)\boldsymbol{e}(\theta,0) - \boldsymbol{z}\boldsymbol{e}(\bar{\theta},\bar{\phi}))\boldsymbol{z}^2 \sin(\bar{\theta}) d\boldsymbol{z} d\bar{\theta} d\bar{\phi},$$

$$\mathcal{U}[r](\theta) = -\frac{1}{8\pi} \int_{[0,\pi] \times [0,2\pi]} \left(\frac{\left(r(\theta) \boldsymbol{e}(\theta,0) - r(\bar{\theta}) \boldsymbol{e}(\bar{\theta},\bar{\phi}) \right) \cdot \boldsymbol{e}_{3}}{\left| r(\theta) \boldsymbol{e}(\theta,0) - r(\bar{\theta}) \boldsymbol{e}(\bar{\theta},\bar{\phi}) \right|} \boldsymbol{s}[r](\bar{\theta},\bar{\phi}) - \frac{\left(r(t,\theta) \boldsymbol{e}(\theta,0) - r(\bar{\theta}) \boldsymbol{e}(\bar{\theta},\bar{\phi}) \right) \cdot \boldsymbol{s}[r](\bar{\theta},\bar{\phi})}{\left| r(\theta) \boldsymbol{e}(\theta,0) - r(\bar{\theta}) \boldsymbol{e}(\bar{\theta},\bar{\phi}) \right|} \boldsymbol{e}_{3} \right) d\bar{\theta} d\bar{\phi}.$$

 $e(\theta, \phi) \in \mathbb{S}^2$, $s[r](\bar{\theta}, \bar{\phi})$ the surface element on \tilde{B}_t .

4

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

23/38

15/12/2020

$$\begin{aligned} A_1[r](t,\theta) &:= \\ &- \frac{1}{8\pi r(t,\theta)} \int_0^{2\pi} \int_0^{\pi} \frac{r(t,\bar{\theta})\sin(\bar{\theta}) - \partial_{\theta}r(t,\bar{\theta})\cos(\bar{\theta})}{\beta[r](t,\theta,\bar{\theta},\phi)} r(t,\bar{\theta})\sin(\bar{\theta}) \Big(r(t,\theta)\cos(\phi) \\ &- r(t,\bar{\theta}) \Big\{\cos(\bar{\theta})\cos(\theta)\cos(\phi) + \sin(\bar{\theta})\sin(\theta)\Big\} \Big) d\bar{\theta} d\phi + \frac{\dot{c}_3\sin(\theta)}{r(t,\theta)} \end{aligned}$$

$$\begin{aligned} \mathcal{A}_{2}[r](t,\theta) &:= \\ &- \frac{1}{8\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{r(t,\bar{\theta})\sin(\bar{\theta}) - \partial_{\theta}r(t,\bar{\theta})\cos(\bar{\theta})}{\beta[r](t,\theta,\bar{\theta},\phi)} r(t,\bar{\theta})\sin(\bar{\theta}) \Big(- r(t,\bar{\theta})\sin(\theta)\cos(\bar{\theta})\cos(\phi) \\ &+ r(t,\bar{\theta})\cos(\theta)\sin(\bar{\theta}) \Big) d\bar{\theta} d\phi - \dot{c}_{3}\cos(\theta) \,. \end{aligned}$$

 $\beta[r](\theta,\bar{\theta},\phi)^2 = r^2(\theta) + r^2(\bar{\theta}) - 2r(\theta)r(\bar{\theta})(\sin(\theta)\sin(\bar{\theta})\cos(\phi) + \cos(\theta)\cos(\bar{\theta})).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Estimates on the non local operators

We set

$$|r|_* = \inf_{(0,\pi)} r(\theta) > 0.$$

$$\begin{split} |\mathcal{U}[r](\theta)| &\leq C \int_{(0,\pi)\times(0,2\pi)} \int_{0}^{r(\bar{\theta})} \frac{z^{2}dz}{|r(\theta)e(\theta,0) - ze(\bar{\theta},\bar{\phi})|} \sin(\bar{\theta})d\bar{\theta}d\bar{\phi}, \\ &\leq \frac{\|r\|_{\infty}^{5/2}}{\sqrt{|r|_{*}}} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\sin(\bar{\theta})d\bar{\theta}d\bar{\phi}}{|e(\bar{\theta},\bar{\phi}) - e(\theta,0)|} \\ &\int_{0}^{2\pi} \int_{0}^{\pi} \frac{\sin(\bar{\theta})d\bar{\theta}d\bar{\phi}}{|e(\bar{\theta},\bar{\phi}) - e(\theta,0)|} = \int_{\partial B(0,1)} \frac{d\sigma(y)}{|y-x|} < C, \forall x \in \partial B(0,1) \end{split}$$

A B + A B +

э

25/38

15/12/2020

bounds and stability estimates

$$\begin{aligned} \|A_{1}[r]\|_{1,\infty} &\leq K\left(\|r\|_{1,\infty},\frac{1}{|r|_{*}}\right) \\ \|A_{1}[r_{1}] - A_{1}[r_{2}]\|_{\infty} &\leq K\left(\frac{1}{|r_{1}|_{*}},\frac{1}{|r_{2}|_{*}},\|r_{1}\|_{\infty},\|r_{2}\|_{\infty}\right)\|r_{1} - r_{2}\|_{\infty} \end{aligned}$$

Remark

$$A_1[r](t,0) = A_1[r](t,\pi) = 0.$$

The characteristic curves are well defined

Image: A matrix

15/12/2020

Local existence and uniqueness

Theorem (AM 20')

Let $r_0 \in C^{0,1}[0,\pi]$ such that $|r_0|_* > 0$. There exists T > 0 and a unique $r \in C(0,T; C^{0,1}(0,\pi))$ satisfying the hyperbolic equation (H). Moreover, there exists a unique associated reference point $c = c[r] \in C(0,T)$ satisfying (C).

Remark

The same result holds true if the motion of the center c is defined in another way. The only properties needed is a uniform bound on c and a stability estimate with respect to r if c = c[r].

Image: A matrix

Outline

On the sedimentation of a falling droplet

- Global existence and uniqueness result for (TS)
- Evolution of the surface of the droplet
- Investigation of the spherical shape case

Recovering the Hadamard and Rybczynksi result in the spherical case $B_0 = B(0, 1)$ means that we should have $B_t = v^*t + B_0$ with v_* the velocity fall of the droplet given by

$$v^* = \frac{2}{9} \frac{R^2}{\mu} (\bar{\rho} - \rho) \frac{\mu + \bar{\mu}}{\bar{\mu} + \frac{2}{3}\mu} g.$$
⁽²⁾

Image: A matrix

29/38

In particular, we can recover explicitly the following property showed by Hadamard and Rybczynski

Lemma (Hadamard–Rybczynski)

Let
$$u_0 = -\Phi * \mathbf{1}_{B_0} e_3$$
, $v^* = -\frac{4}{15} e_3$. We have

$$(u_0 - v^*) \cdot n = 0$$
 on ∂B_0

Corollary

The solution (u, ρ) of the transport-Stokes equation (1) in the case where $\rho_0 = 1_{B_0}$ is given by

$$u(t, x) = u_0(x - v^*t), \quad \rho(t, x) = \rho_0(x - v^*t),$$

$$u_0 = -\Phi * \rho_0 e_3, \qquad \rho_0 = \mathbf{1}_{B(0,1)}.$$

In other words, the drop B_t remains spherical for all time.

Proof.

$$\partial_t \rho + \nabla \rho \cdot \boldsymbol{u} = (\nabla \rho_0 \cdot (\boldsymbol{u}_0 - \boldsymbol{v}^*))|_{(\cdot - \boldsymbol{v}^* t)} = \boldsymbol{0},$$

we conclude using the fact that $\nabla \rho_0 = ns^1$ where s^1 is the surface measure on the sphere and *n* the unit normal.

Image: A matrix

Recovering the spherical shape in the hyperbolic equation $\partial_t r + A_1[r]\partial_\theta r = A_2[r]$

Case 1. We set $c = v^* t$. The result is straightforward.

Proof.

We recall that

$$A_2[r] = (\mathcal{U}[r] - \dot{c}) \cdot \boldsymbol{e}(\cdot, 0)$$

At t = 0, $r = r_0 = 1$ and $A_2[1] = (u_0 - v^*) \cdot n = 0$ hence $r_0 = 1$ is solution all the time.

Case 2. $c \neq v^*t$

Proposition

Let $r_0 = 1$ and (r, c) the solution of (H), with $\dot{c} \neq v^*$. Denote by T > 0 the maximal time of existence of the solution such that $|c - c^*| \leq 1$ with $c^* = v^*t = -\frac{4}{15}e_3t$. Then r is given by

$$r(t, heta) = -(c-c^*)_3\cos(heta) + \sqrt{1-(c-c^*)_3^2\sin^2(heta)}, \ (t, heta) \in [0,T] imes [0,\pi]$$

and satisfies

$$|c(t) + r(t, \theta)e(\theta, 0) - v^*t|^2 = 1$$
 for all $\theta \in [0, \pi]$ and $t \leq T$.

In other words

$$\partial B_t := c + \partial \tilde{B}_t = \partial B(c^*, 1) \text{ on } [0, T].$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof.

$$ar{r}(t, heta) = -(m{c} - m{c}^*)_3 \cos(heta) + \sqrt{1 - (m{c} - m{c}^*)_3^2 \sin^2(heta)}, \ (t, heta) \in [0,T] imes [0,\pi]$$

is a solution iff

$$(\dot{\boldsymbol{c}}^* - \mathcal{U}[\bar{\boldsymbol{r}}]) \cdot (\bar{\boldsymbol{r}} \boldsymbol{e}(\theta, 0) + \boldsymbol{c} - \boldsymbol{c}^*) = 0$$

Use the change of variable

$$c + \overline{r}(\theta) e(\theta, 0) - c^* = e(\gamma, 0)$$

and show that

$$\mathcal{U}[\overline{r}](t,\theta) = \mathcal{U}[\mathbf{1}](\gamma)$$

・ロト ・ 日 ・ ・ 回 ・

→ ∃ →

Global existence in the spherical case

We assume that c is transported along the flow

$$\begin{cases} \dot{c}[r]_{3}(t) = -\frac{1}{4} \int_{0}^{\pi} r^{2}(t,\bar{\theta}) \sin(\bar{\theta}) \left(1 - \frac{1}{2} \sin^{2}(\bar{\theta})\right) d\bar{\theta}, \\ c[r]_{3}(0) = 0, \end{cases}$$
(C)

Proposition

Let $r_0 = 1$ and (r, c) the solution of (H) and (C). For all time $t \ge 0$ we have $c_3(t) \le c_3^*(t), |c(t) - c^*(t)| \le 1$ and

$$\lim_{t\to\infty} c_3(t) - c_3^*(t) = -1$$

Figure: Droplet evolution for $t = 0, 3, \cdots, 24$

Numerical simulation using upwind finite difference scheme $\overset{\leftarrow}{\underset{\leftarrow} \square } \vdash \overset{\leftarrow}{\underset{\leftarrow} \square } \vdash \overset{\leftarrow}{\underset{\leftarrow} \square } \vdash \overset{\leftarrow}{\underset{\leftarrow} \square }$

Numerical investigation of a special case

We choose $\dot{c} = \lambda \dot{c}^*$ with $\lambda > 1$. We have

$$|c(t) - c^*(t)| = t(\lambda - 1)|v^*| = t(\lambda - 1)\frac{4}{15},$$

if we set for instance $\lambda = \frac{17}{2}$, the time \overline{t} for which one should have $|c(\overline{t}) - c^*(\overline{t})| = 1$ is $\overline{t} = 0.5$.

t	0	0.1	0.2	0.3	0.35	0.4	0.45	0.49	0.5
$ \mathbf{C}-\mathbf{C}^* $	0.02	0.22	0.42	0.62	0.72	0.82	0.92	1.00	1.02
$E_1^n(\times.10^{-2})$	0.02	0.22	0.48	0.83	1.08	1.4	1.86	2.51	2.82
$\min_{i} r_{i}^{n}$	0.98	0.78	0.58	0.38	0.28	0.1805	0.0807	0.0009	-0.1394
$V^{n}(\times .10^{-2})$	0.03	0.436	0.87	1.38	1.68	2.014	2.42	2.84	-

Table: Second test case. Evolution of E_1^n , min r_i^n and V^n

< ロト < 同ト < ヨト < ヨト

Ongoing work

- Investigation of an appropriate scheme for the hyperbolic equation (convergence result and stability, ensuring the steady state approximation?)
- Investigation of other axisymmetric shapes such as ellipsoids

$$r_0(\theta) = \frac{1}{\sqrt{1 - \frac{3}{4}\cos^2(\theta)}}, \quad r_0(\theta) = \frac{1}{\sqrt{1 - \frac{3}{4}\sin^2(\theta)}}, \quad \theta \in [0, \pi],$$

Image: A matrix

.

"Simulation" of an ellipse case

・ロト・(部・・モト・モ・・モー